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Preface 

This book was written to serve students and researchers of the animal sciences, with the 
primary purpose of helping them to learn about and apply appropriate experimental designs 
and statistical methods. Statistical methods applied to biological sciences are known as 
biostatistics or biometrics, and they have their origins in agricultural research. The 
characteristic that distinguishes biometrics within statistics is the fact that biological 
measurements are variable, not only because of measurement error, but also from their 
natural variability from genetic and environmental sources. These sources of variability 
must be taken into account when making inferences about biological material. Accounting 
for these sources of variation has led to the development of experimental designs that 
incorporate blocking, covariates and repeated measures. Appropriate techniques for analysis 
of data from these designs and others are covered in the book. 

Early in the book, readers are presented basic principles of statistics so they will be 
able to follow subsequent applications with familiarity and understanding, and without 
having to switch to another book of introductory statistics. Later chapters cover statistical 
methods most frequently used in the animal sciences for analysis of continuous and 
categorical variables. Each chapter begins by introducing a problem with practical 
questions, followed with a brief theoretical background and short proofs. The text is 
augmented with examples, mostly from animal sciences and related fields, with the purpose 
of making applications of the statistical methods familiar. Some examples are very simple 
and are presented in order to provide basic understanding and the logic behind calculations. 
These examples can be solved using a pocket calculator. Some examples are more complex, 
especially those in the later chapters. Most examples are also solved using SAS statistical 
software. Both sample SAS programs and SAS listings are given with brief explanations. 
Further, the solutions are often given with sufficient decimal digits, more than is practically 
necessary, so that readers can compare results to verify calculation technique.  

The first five chapters of the book are: 1) Presenting and Summarizing Data; 2) 
Probability; 3) Random Variables and Their Distributions; 4) Population and Sample; and 
5) Estimation of Parameters. These chapters provide a basic introduction to biostatistics 
including definitions of terms, coverage of descriptive statistics and graphical presentation 
of data, the basic rules of probability, methods of parameter estimation, and descriptions of 
distributions including the Bernoulli, binomial, hypergeometric, Poisson, multinomial, 
uniform, normal, chi-square, t, and F distributions. Chapter 6 describes hypothesis testing 
and includes explanations of the null and alternate hypotheses, use of probability or density 
functions, critical values, critical region and P values. Hypothesis tests for many specific 
cases are shown such as population means and proportions, expected and empirical 
frequency, and test of variances. Also, the use of confidence intervals in hypothesis testing 
is shown. The difference between statistical and practical significance, types of errors in 
making conclusions, power of test, and sample size are discussed. 

Chapters 7 to 10 present the topics of correlation and regression. The coverage begins 
with simple linear regression and describes the model, its parameters and assumptions. 
Least squares and maximum likelihood methods of parameter estimation are shown. The 
concept of partitioning the total variance to explained and unexplained sources in the 
analysis of variance table is introduced. In chapter 8 the general meaning and definition of 
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the correlation coefficient, and the estimation of the correlation coefficient from samples 
and testing of hypothesis are shown. In chapters 9 and 10 multiple and curvilinear 
regressions are described. Important facts are explained using matrices in the same order of 
argument as for the simple regression. Model building is introduced including the 
definitions of partial and sequential sum of squares, test of model adequacy using a 
likelihood function, and Conceptual Predictive and Akaike criteria. Some common 
problems of regression analysis like outliers and multicollinearity are described, and their 
detection and possible remedies are explained. Polynomial, nonlinear and segmented 
regressions are introduced. Some examples are shown including estimating growth curves 
and functions with a plateau such as for determining nutrient requirements. 

One-way analysis of variance is introduced in chapter 11. In this chapter a one-way 
analysis of variance model is used to define hypotheses, partition sums of squares in order 
to use an F test, and estimate means and effects. Post-test comparison of means, including 
least significant difference, Tukey test and contrasts are shown. Fixed and random effects 
models are compared, and fixed and random effects are also shown using matrices. 

Chapters 12 to 21 focus on specific experimental designs and their analyses. Specific 
topics include: general concepts of design, blocking, change-over designs, factorials, nested 
designs, double blocking, split-plots, analysis of covariance, repeated measures and analysis 
of numerical treatment levels. Examples with sample SAS programs are provided for each 
topic. 

The final chapter covers the special topic of discrete dependent variables. Logit and 
probit models for binary and binomial dependent variables and loglinear models for count 
data are explained. A brief theoretical background is given with examples and SAS 
procedures.  

We wish to express our gratitude to everyone who helped us produce this book. We 
extend our special acknowledgement to Matt Lucy, Duane Keisler, Henry Mesa, Kristi 
Cammack, Marijan Posavi and Vesna Luzar-Stiffler for their reviews, and Cyndi Jennings, 
Cinda Hudlow and Dragan Tupajic for their assistance with editing. 

 
 
Zagreb, Croatia Miroslav Kaps 
Columbia, Missouri William R. Lamberson 
March 2004  
 





 

1 

Chapter 1  
 
Presenting and Summarizing Data 

1.1 Data and Variables 

Data are the material with which statisticians work. They are records of measurement, 
counts or observations. Examples of data are records of weights of calves, milk yield in 
lactation of a group of cows, male or female sex, and blue or green color of eyes. A set of 
observations on a particular character is termed a variable. For example, variables denoting 
the data listed above are weight, milk yield, sex, and eye color. Data are the values of a 
variable, for example, a weight of 200 kg, a daily milk yield of 20 kg, male, or blue eyes. 
The expression variable depicts that measurements or observations can be different, i.e., 
they show variability. Variables can be defined as quantitative  (numerical) and qualitative  
(attributive, categorical, or classification). 

Quantitative variables have values expressed as numbers and the differences between 
values have numerical meaning. Examples of quantitative variables are weight of animals, 
litter size, temperature or time. They also can include ratios of two numerical variables, 
count data, and proportions. A quantitative variable can be continuous or discrete. A 
continuous variable can take on an infinite number of values over a given interval. Its values 
are real numbers. A discrete variable is a variable that has countable values, and the number 
of those values can either be finite or infinite. Its values are natural numbers or integers. 
Examples of continuous variables are milk yield or weight, and examples of discrete 
variables are litter size or number of laid eggs per month. 

Qualitative variables have values expressed in categories. Examples of qualitative 
variables are eye color or whether or not an animal is ill. A qualitative variable can be an 
ordinal or nominal. An ordinal variable has categories that can be ranked. A nominal 
variable has categories that cannot be ranked. No category is more valuable than another. 
Examples of nominal variables are identification number, color or gender, and an example 
of an ordinal variable is calving ease scoring. For example, calving ease can be described in 
5 categories, but those categories can be enumerated: 1. normal calving, 2. calving with 
little intervention, 3. calving with considerable intervention, 4. very difficult calving, and 5. 
Caesarean section. We can assign numbers (scores) to ordinal categories; however, the 
differences among those numbers do not have numerical meaning. For example, for calving 
ease, the difference between score 1 and 2 (normal calving and calving with little 
intervention) does not have the same meaning as the difference between 4 and 5 (very 
difficult calving and Caesarean section). As a rule those scores depict categories, but not a 
numerical scale. On the basis of the definition of a qualitative variable it may be possible to 
assign some quantitative variables, for example, the number of animals that belong to a 
category, or the proportion of animals in one category out of the total number of animals.  
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1.2 Graphical Presentation of Qualitative Data 

When describing qualitative data each observation is assigned to a specific category. Data 
are then described by the number of observations in each category or by the proportion of 
the total number of observations. The frequency for a certain category is the number of 
observations in that category. The relative frequency for a certain category is the proportion 
of the total number of observations. Graphical presentations of qualitative variables can 
include bar, column or pie-charts. 
 
 
Example: The numbers of cows in Croatia under milk recording by breed are listed in the 
following table: 
 

Breed Number of cows Percentage 
Simmental 62672 76% 
Holstein-Friesian 15195 19% 
Brown  3855 5% 
Total  81722 100% 

 
The number of cows can be presented using bars with each bar representing a breed 
(Figure 1.1). 
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Figure 1.1  Number of cows under milk recording by breed 

 
The proportions or percentage of cows by breed can also be shown using a pie-chart  
(Figure 1.2). 
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Figure 1.2  Percentage of cows under milk recording by breed 

 

1.3 Graphical Presentation of Quantitative Data 

The most widely used graph for presentation of quantitative data is a histogram. A 
histogram is a frequency distribution of a set of data. In order to present a distribution, the 
quantitative data are partitioned into classes and the histogram shows the number or relative 
frequency of observations for each class. 
 
 
1.3.1 Construction of a Histogram 

Instructions for drawing a histogram can be listed in several steps: 
 
1. Calculate the range: (Range = maximum – minimum value) 
2. Divide the range into five to 20 classes, depending on the number of observations. The 

class width is obtained by rounding the result up to an integer number. The lowest class 
boundary must be defined below the minimum value, the highest class boundary must be 
defined above the maximum value. 

3. For each class, count the number of observations belonging to that class. This is the true 
frequency.  

4. The relative frequency is calculated by dividing the true frequency by the total number of 
observations: (Relative frequency = true frequency / total number of observations). 

5. The histogram is a column (or bar) graph with class boundaries defined on one axis and 
frequencies on the other axis. 
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Example: Construct a histogram for the 7-month weights (kg) of 100 calves: 
 

233  208  306  300  271  304  207  254  262  231  
279  228  287  223  247  292  209  303  194  268   
263  262  234  277  291  277  256  271  255  299   
278  290  259  251  265  316  318  252  316  221   
249  304  241  249  289  211  273  241  215  264   
216  271  296  196  269  231  272  236  219  312   
320  245  263  244  239  227  275  255  292  246   
245  255  329  240  262  291  275  272  218  317   
251  257  327  222  266  227  255  251  298  255   
266  255  214  304  272  230  224  250  255  284   
 

Minimum = 194 
Maximum = 329 
Range = 329 - 194 = 135 
 
For a total 15 classes, the width of a class is:  

135 / 15 = 9 
The class width can be rounded to 10 and the following table constructed: 
 

Class 
limits 

Class  
midrange 

Number of 
calves 

Relative 
Frequency (%) 

Cumulative  
number of calves 

185 - 194 190 1 1 1 
195 - 204 200 1 1 2 
205 - 214 210 5 5 7 
215 - 224 220 8 8 15 
225 - 234 230 8 8 23 
235 - 244 240 6 6 29 
245 - 254 250 12 12 41 
255 - 264 260 16 16 57 
265 - 274 270 12 12 69 
275 - 284 280 7 7 76 
285 - 294 290 7 7 83 
295 - 304 300 8 8 91 
305 - 314 310 2 2 93 
315 - 324 320 5 5 98 
325 - 334 330 2 2 100 

 
Figure 1.3 presents the histogram of weights of calves. The classes are on the horizontal 
axis and the numbers of animals are on the vertical axis. Class values are expressed as the 
class midranges (midpoint between the limits), but could alternatively be expressed as class 
limits. 
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Figure 1.3  Histogram of weights of calves at seven months of age (n=100) 

 
Another well-known way of presenting quantitative data is by the use of a ‘Stem and Leaf’ 
graph. The construction of a stem and leaf can be shown in three steps: 

1. Each value is divided into two parts, ‘Stem’ and ‘Leaf’. ‘Stem’ corresponds to 
higher decimal places, and ‘Leaf’ corresponds to lower decimal places. For the 
example of calf weights, the first two digits of each weight would represent the 
stem and the third digit the leaf. 

2. ‘Stems’ are sorted in ascending order in the first column. 
3. The appropriate ‘Leaf’ for each observation is recorded in the row with the 

appropriate ‘Stem’. 
A ‘Stem and Leaf’ plot of the weights of calves is shown below. 
 

Stem Leaf 
19  |  4 6 
20  |  7 8 9 
21  |  1 4 5 6 8 9 
22  |  1 2 3 4 7 8 
23  |  0 1 1 3 4 6 9 
24  |  0 1 1 4 5 5 6 7 9 9 
25  |  0 1 1 1 2 4 5 5 5 5 5 5 5 6 7 9  
26  |  2 2 2 3 3 4 5 6 6 8 9  
27  |  1 1 1 2 2 2 3 5 5 7 7 8 9  
28  |  4 7 9  
29  |  0 1 1 2 2 6 8 9 
30  |  0 3 4 4 4 6  
31  |  2 6 6 7 8 
32  |  0 7 9 
 

For example, in the next to last row the ‘Stem’ is 31 and ‘Leaves’ are 2, 6, 6, 7 and 8. This 
indicates that the category includes the measurements 312, 316, 316, 317 and 318. When 
the data are suited to a stem and leaf plot it shows a distribution similar to the histogram and 
also shows each value of the data. 



6  Biostatistics for Animal Science 

 

1.4 Numerical Methods for Presenting Data 

Numerical methods for presenting data are often called descriptive statistics. They include: 
a) measures of central tendency; b) measures of variability ; c) measures of the shape of a 
distribution; and d) measures of relative standing.  
 
 

Descriptive statistics 

a) measures of  
central tendency 

b) measures of 
variability 

c) measures of the  
shape of a 
distribution  

d) measures of  
relative position  

- arithmetic mean - range - skewness - percentiles 

- median - variance - kurtosis - z-values 

- mode - standard deviation   

 - coefficient of  
variation    

 
 
Before descriptive statistics are explained in detail, it is useful to explain a system of 
symbolic notation that is used not only in descriptive statistics, but in statistics in general. 
This includes the symbols for the sum, sum of squares and sum of products. 
 
 
1.4.1 Symbolic Notation  

The Greek letter Σ (sigma) is used as a symbol for summation, and yi for the value for 
observation i. 
The sum of n numbers y1, y2,…, yn can be expressed:  

Σi yi = y1 + y2 +.....+ yn 

The sum of squares of n numbers y1, y2,…, yn is: 

Σi y2
i = y2

1 + y2
2 +.....+ y2

n 

The sum of products of two sets of n numbers (x1, x2,…, xn) and (y1, y2,…, yn): 

Σi xiyi = x1y1 + x2y2 +.....+ xnyn 

 
 
Example: Consider a set of three numbers: 1, 3 and 6. The numbers are symbolized by: 
y1 = 1, y2 = 3 and y3 = 6. 
 
The sum and sum of squares of those numbers are:  

Σi yi = 1 + 3 + 6 = 10 
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Σi y2
i = 12 + 32 + 62 = 46 

Consider another set of numbers: x1 = 2, x2 = 4 and x3 = 5. 
 
The sum of products of x and y is: 

Σi xiyi = (1)(2) + (3)(4) + (6)(5) = 44 

Three main rules of addition are:  
 
1. The sum of addition of two sets of numbers is equal to the addition of the sums: 

Σi (xi + yi) = Σi xi + Σi yi 

2. The sum of products of a constant k and a variable y is equal to the product of the 
constant and the sum of the values of the variable: 

Σi k yi = k Σi yi 

3. The sum of n constants with value k is equal to the product n k:  
Σi k = n k 

 
 
1.4.2 Measures of Central Tendency 

Commonly used measures of central tendency are the arithmetic mean, median and mode. 
 
The arithmetic mean of a sample of n numbers y1,y2,..., yn is: 

 
n

y
y i i∑=

 
The arithmetic mean for grouped data is: 

n
yf

y i ii∑=  

with fi being the frequency or proportion of observations yi. If fi is a proportion then n = 1. 
 
Important properties of the arithmetic mean are: 

1. ( )∑ =−
i i yy 0   

The sum of deviation from the arithmetic mean is equal to zero. This means that only 
(n - 1) observations are independent and the nth can be expressed as 

11 ... −−−−= nn yyyny   

2. ( )∑ =−
i i yy 2 minimum 

The sum of squared deviations from the arithmetic mean is smaller than the sum of 
squared deviations from any other value. 
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The Median of a sample of n observations y1,y2,...,yn is the value of the observation that is in 
the middle when observations are sorted from smallest to the largest. It is the value of the 
observation located such that one half of the area of a histogram is on the left and the other 
half is on the right. If n is an odd number the median is the value of the (n+1)/2-th 
observation. If n is an even number the median is the average of (n)/2-th and (n+2)/2-th 
observations. 
 
The Mode of a sample of n observations y1,y2,...,yn is the value among the observations that 
has the highest frequency. 
 
Figure 1.4 presents frequency distributions illustrating the mean, median and mode. 
Although the mean is the measure that is most common, when distributions are asymmetric, 
the median and mode can give better information about the set of data. Unusually extreme 
values in a sample will affect the arithmetic mean more than the median. In that case the 
median is a more representative measure of central tendency than the arithmetic mean. For 
extremely asymmetric distributions the mode is the best measure.  
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Figure 1.4  Interpretation of mean, median and mode 

 
1.4.3 Measures of Variability 

Commonly used measures of variability are the range, variance, standard deviation and 
coefficient of variation. 
 
Range is defined as the difference between the maximum and minimum values in a set of 
observations. 
 
Sample variance (s2)  of n observations (measurements) y1, y2,...,yn is: 

1
)( 2

2

−

−
= ∑

n
yy

s i i  

This formula is valid if y  is calculated from the same sample, i.e., the mean of a population 
is not known. If the mean of a population (µ) is known then the variance is: 

n
y

s i i∑ −
=

2
2

)( µ
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The variance is the average squared deviation about the mean. 
The sum of squared deviations about the arithmetic mean is often called the corrected sum 
of squares or just sum of squares and it is denoted by SSyy. The corrected sum of squares can 
be calculated:  

( )
n

y
yyySS i i

i ii iyy

2

22)( ∑∑∑ −=−=  

 
Further, the sample variance is often called the mean square denoted by MSyy, because: 

1
2

−
==

n
SS

MSs yy
yy  

For grouped data, the sample variance with an unknown population mean is: 

1

)(
  

2
2

−

−
= ∑

n

yyf
s i ii  

where fi is the frequency of observation yi, and the total number of observations is n = Σifi. 
 
Sample standard deviation (s)  is equal to square root of the variance. It is the average 
absolute deviation from the mean: 

2ss =  

Coefficient of variation (CV)  is defined as: 

%100
y
sCV =  

The coefficient of variation is a relative measure of variability expressed as a percentage. It 
is often easier to understand the importance of variability if it is expressed as a percentage. 
This is especially true when variability is compared among sets of data that have different 
units. For example if CV for weight and height are 40% and 20%, respectively, we can 
conclude that weight is more variable than height. 
 
 
1.4.4 Measures of the Shape of a Distribution 

The measures of the shape of a distribution are the coefficients of skewness and kurtosis. 
Skewness (sk)  is a measure of asymmetry of a frequency distribution. It shows if deviations 
from the mean are larger on one side than the other side of the distribution. If the population 
mean (µ) is known, then skewness is: 

( ) ( )∑ 





 −

−−
=

i
i

s
y

nn
sk

3

2 1
1 µ  

 



10  Biostatistics for Animal Science 

 

If the population mean is unknown, the sample mean ( y ) is substituted for µ and skewness 
is: 

( ) ( )∑ 





 −

−−
=

i
i

s
yy

nn
nsk

3

2 1
 

For a symmetric distribution skewness is equal to zero. It is positive when the right tail is 
longer, and negative when left tail is longer (Figure 1.5). 
 

a) b)

 
Figure 1.5  Illustrations of skewness: a) negative, b) positive 

 
Kurtosis (kt)  is a measure of flatness or steepness of a distribution, or a measure of the 
heaviness of the tails of a distribution. If the population mean (µ) is known, kurtosis is: 

31 4

−





 −

= ∑i
i

s
y

n
kt µ  

If the population mean is unknown, the sample mean ( y ) is used instead and kurtosis is: 

( )
( ) ( ) ( )

( )
( ) ( )3 2

13
3 2 1

1 24

−−
−

−





 −

−−−
+

= ∑ nn
n

s
yy

nnn
nnkt

i
i  

For variables such as weight, height or milk yield, frequency distributions are expected to 
be symmetric about the mean and bell-shaped. These are normal distributions. If 
observations follow a normal distribution then kurtosis is equal to zero. A distribution with 
positive kurtosis has a large frequency of observations close to the mean and thin tails. A 
distribution with a negative kurtosis has thicker tails and a lower frequency of observations 
close to the mean than does the normal distribution (Figure 1.6). 
 

a) b)

 
Figure 1.6  Illustrations of kurtosis: a) positive, b) negative 
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1.4.5 Measures of Relative Position 

Measures of relative position include percentiles and z-value. 
The percentile value (p)  of an observation yi, in a data set has 100p% of observations 
smaller than yi and has 100(1-p)% of observations greater than yi. A lower quartile is the 
25th percentile, an upper quartile is 75th percentile, and the median is the 50th percentile. 
 
The z-value is the deviation of an observation from the mean in standard deviation units: 

s
yyz i

i
−

=  

 
Example: Calculate the arithmetic mean, variance, standard deviation, coefficient of 
variation, median and mode of the following weights of calves (kg): 
 

260  260  230  280  290  280  260  270  260  300   

280  290  260  250  270  320  320  250  320  220 

 
Arithmetic mean: 

n

y
y i i∑=  

Σi yi = 260 + 260 + … + 220 = 5470 kg 

5.273
20

5470
==y  kg 

Sample variance: 

( )

11

)(

2

22
2

−

−
=

−

−
=

∑∑∑
n

n

y
y

n

yy
s

i i

i i
i i  

1510700)220...260260( 2222 =+++=∑i iy  kg2 

( )
3158.771

19
20

54701510700
2

2 =
−

=s  kg2 

Sample standard deviation: 

77.273158.7712 === ss  kg 

Coefficient of variation: 

%15.10%100
273.5
27.77 100%s  ===

y
CV  
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To find the median the observations are sorted from smallest to the largest: 
 
220  230  250  250  260  260  260  260  260  270  270  280  280  280  290  290  

300  320  320  320 

 
Since n = 20 is an even number, the median is the average of n/2 = 10th and (n+2)/2 = 11th 
observations when the data are sorted. The values of those observations are 270 and 270, 
respectively, and their average is 270, thus, the median is 270 kg. The mode is 260 kg 
because this is the observation with the highest frequency.  

1.5 SAS Example 

Descriptive statistics for the example set of weights of calves are calculated using SAS 
software. For a more detailed explanation how to use SAS, we recommend the exhaustive 
SAS literature, part of which is included in the list of literature at the end of this book. This 
SAS program consists of two parts: 1) the DATA step, which is used for entry and 
transformation of data, 2) and the PROC step, which defines the procedure(s) for data 
analysis. SAS has three basic windows: a Program window (PGM) in which the program is 
written, an Output window (OUT) in which the user can see the results, and LOG window 
in which the user can view details regarding program execution or error messages. 
Returning to the example of weights of 20 calves: 
 
SAS program: 
 
DATA calves; 
INPUT weight @@; 
DATALINES; 
260  260  230  280  290  280  260  270  260  300 
280  290  260  250  270  320  320  250  320  220 
; 
PROC MEANS DATA = calves N MEAN MIN MAX VAR STD CV ; 
VAR weight; 
RUN; 

 
Explanation: The SAS statements will be written with capital letters to highlight them, 
although it is not generally mandatory, i.e. the program does not distinguish between small 
letters and capitals. Names that user assigns to variables, data files, etc., will be written with 
small letters. In this program the DATA statement defines the name of the file that contains 
data. Here, calves is the name of the file. The INPUT statement defines the name(s) of the 
variable, and the DATALINES statement indicates that data are on the following lines. 
Here, the name of the variable is weight. SAS needs data in columns, for example,  
 
INPUT weight; 
DATALINES; 
260 
260 
… 
220 
; 
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reads values of the variable weight. Data can be written in rows if the symbols @@ are used 
with the INPUT statement. SAS reads observations one by one and stores them into a 
column named weight. The program uses the procedure (PROC) MEANS. The option 
DATA = calves defines the data file that will be used in the calculation of statistics, 
followed by the list of statistics to be calculated: N = the number of observations, MEAN = 
arithmetic mean, MIN = minimum, MAX = maximum, VAR = variance, STD= standard 
deviation, CV = coefficient of variation. The VAR statement defines the variable (weight) to 
be analyzed. 
 
SAS output: 
 
       Analysis Variable: WEIGHT 
 

N   Mean   Minimum   Maximum   Variance   Std Dev       CV 
------------------------------------------------------------- 
20  273.5    220      320     771.31579  27.77257    10.1545 
------------------------------------------------------------- 
 

The SAS output lists the variable that was analyzed (Analysis variable: WEIGHT). The 
descriptive statistics are then listed. 

Exercises 

1.1. The number of eggs laid per month in a sample of 40 hens are shown below:  
 

30 23 26 27 
29 25 27 24 
28 26 26 26 
30 26 25 29 
26 23 26 30 
25 28 24 26 
27 25 25 28 
27 28 26 30 
26 25 28 28 
24 27 27 29 

Calculate descriptive statistics and present a frequency distribution.  
 
1.2. Calculate the sample variance given the following sums:  

Σi yi = 600 (sum of observations); Σi yi
2 = 12656 (sum of squared observations); n = 30 

(number of observations) 
 
1.3. Draw the histogram of the values of a variable y and its frequencies f:  
 

y 12 14 16 18 20 22 24 26 28 
f 1 3 4 9 11 9 6 1 2 

Calculate descriptive statistics for this sample. 
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1.4. The following are data of milk fat yield (kg) per month from 17 Holstein cows: 
 

27  17  31  20  29  22  40  28  26  28  34  32  32  32  30  23  25 
 
Calculate descriptive statistics. Show that if 3 kg are added to each observation, the mean 
will increase by three and the sample variance will stay the same. Show that if each 
observation is divided by two, the mean will be two times smaller and the sample variance 
will be four times smaller. How will the standard deviation be changed? 
 
 



 

15 

Chapter 2  
 
Probability 

The word probability is used to indicate the likelihood that some event will happen. For 
example, ‘there is high probability that it will rain tonight’. We can conclude this according 
to some signs, observations or measurements. If we can count or make a conclusion about 
the number of favorable events, we can express the probability of occurrence of an event by 
using a proportion or percentage of all events. Probability is important in drawing 
inferences about a population. Statistics deals with drawing inferences by using 
observations and measurements, and applying the rules of mathematical probability.  

A probability can be a-priori or a-posteriori. An a-priori probability comes from a 
logical deduction on the basis of previous experiences. Our experience tells us that if it is 
cloudy, we can expect with high probability that it will rain. If an animal has particular 
symptoms, there is high probability that it has or will have a particular disease. An a-
posteriori probability is established by using a planned experiment. For example, assume 
that changing a ration will increase milk yield of dairy cows. Only after an experiment was 
conducted in which numerical differences were measured, it can be concluded with some 
probability or uncertainty, that a positive response can be expected for other cows as well. 
Generally, each process of collecting data is an experiment. For example, throwing a die 
and observing the number is an experiment.  
Mathematically, probability is: 

n
mP =  

where m is the number of favorable trials and n is the total number of trials. 
 
An observation of an experiment that cannot be partitioned to simpler events is called an 
elementary event or simple event. For example, we throw a die once and observe the result. 
This is a simple event. The set of all possible simple events is called the sample space. All 
the possible simple events in an experiment consisting of throwing a die are 1, 2, 3, 4, 5 and 
6. The probability of a simple event is a probability that this specific event occurs. If we 
denote a simple event by Ei, such as throwing a 4, then P(Ei) is the probability of that event.  

2.1 Rules about Probabilities of Simple Events 

Let E1, E2,..., Ek be the set of all simple events in some sample space of simple events. Then 
we have: 
1. The probability of any simple event occurring must be between 0 and 1 inclusively: 

0 ≤ P(Ei) ≤ 1, i = 1,…, k  
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2. The sum of the probabilities of all simple events is equal to 1: 

Σi P(Ei) =1  

 
Example: Assume an experiment consists of one throw of a die. Possible results are 1, 2, 3, 
4, 5 and 6. Each of those possible results is a simple event. The probability of each of those 
events is 1/6, i.e., P(E1) = P(E2) = P(E3) = P(E4) = P(E5) = P(E6). This can be shown in a 
table: 
 

Observation Event (Ei) P(Ei) 
1 E1 P(E1) = 1/6 
2 E2 P(E2) = 1/6 
3 E3 P(E3) = 1/6 
4 E4 P(E4) = 1/6 
5 E5 P(E5) = 1/6 
6 E6 P(E6) = 1/6 

 
Both rules about probabilities are satisfied. The probability of each event is (1/6), which is 

less than one. Further, the sum of probabilities, Σi P(Ei) is equal to one. In other words the 
probability is equal to one that any number between one and six will result from the throw 
of a die.  
 
 
Generally, any event A is a specific set of simple events, that is, an event consists of one or 
more simple events. The probability of an event A is equal to the sum of probabilities of the 
simple events in the event A. This probability is denoted with P(A). For example, assume 
the event that is defined as a number less than 3 in one throw of a die. The simple events are 
1 and 2 each with the probability (1/6). The probability of A is then (1/3). 

2.2 Counting Rules 

Recall that probability is: 

P = number of favorable trials / total number of trials 

Or, if we are able to count the number of simple events in an event A and the total number 
of simple events:  

P = number of favorable simple events / total number of simple events 

A logical way of estimating or calculating probability is to count the number of favorable 
trials or simple events and divide by the total number of trials. However, practically this can 
often be very cumbersome, and we can use counting rules instead.  
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2.2.1 Multiplicative Rule 

Consider k sets of elements of size n1, n2,..., nk. If one element is randomly chosen from 
each set, then the total number of different results is: 

n1, n2, n3,..., nk 

 
 
Example: Consider three pens with animals marked as listed:  
 

Pen 1:  1,2,3 
Pen 2: A,B,C 
Pen 3: x,y 

 
The number of animals per pen are n1 = 3, n2 = 3, n3 = 2.  
The possible triplets with one animal taken from each pen are: 

1Ax, 1Ay, 1Bx, 1By, 1Cx, 1Cy 
2Ax, 2Ay, 2Bx, 2By, 2Cx, 2Cy 
3Ax, 3Ay, 3Bx, 3By, 3Cx, 3Cy 

The number of possible triplets is: 3x3x2=18 
 
 
2.2.2 Permutations 

From a set of n elements, the number of ways those n elements can be rearranged, i.e., put 
in different orders, is the permutations of n elements:  

 Pn = n!  

The symbol n! (factorial of n) denotes the product of all natural numbers from 1 to n:  

n! = (1) (2) (3) ... (n) 

Also, by definition 0! = 1. 
 
Example: In how many ways can three animals, x, y and z, be arranged in triplets? 
n = 3 
The number of permutations of 3 elements: P(3) = 3! = (1) (2) (3) = 6 
 
The six possible triplets:     xyz  xzy  yxz  yzx  zxy  zyx 
 
 
More generally, we can define permutations of n elements taken k at a time in particular 
order as: 

( )!
!

, kn
nP kn −

=  
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Example: In how many ways can three animals x, y and z be arranged in pairs such that the 
order in the pairs is important (xz is different than zx)? 

( ) 6
!23

!3
, =

−
=knP  

The six possible pairs are:    xy  xz  yx  yz  zx  zy  
 
 
2.2.3 Combinations 

From a set of n elements, the number of ways those n elements can be taken k at a time 
regardless of order (xz is not different than zx) is: 

( )
( ) ( )

!
1...1

!!
!

k
knnn

knk
n

k
n +−−

=
−

=







 

 
Example: In how many ways can three animals, x, y, and z, be arranged in pairs when the 
order in the pairs is not important?  

( ) 3
!23!2

!3
2
3

=
−

=







=








k
n

 

There are three possible pairs:   xy  xz  yz 
 
 

2.2.4 Partition Rule 

From a set of n elements to be assigned to j groups of size n1, n2, n3,..., nj, the number of 
ways in which those elements can be assigned is: 

!!...!
!

21 jnnn
n  

where n = n1 + n2 + ... + nj  
 
Example:  In how many ways can a set of five animals be assigned to j=3 stalls with n1 = 2 
animals in the first, n2 = 2 animals in the second and n3 = 1 animal in the third?  

30
!1 !2 !2

!5
=  

Note that the previous rule for combinations is a special case of partitioning a set of size n 
into two groups of size k and n-k. 
 
 
2.2.5 Tree Diagram 

The tree diagram illustrates counting, the representation of all possible outcomes of an 
experiment. This diagram can be used to present and check the probabilities of a particular 
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event. As an example, a tree diagram of possible triplets, one animal taken from each of 
three pens, is shown below: 

Pen 1:  1, 2, 3 
Pen 2:  x, y 
Pen 3: A, B, C 

The number of all possible triplets is: 
(3)(3)(2) = 18 
 
The tree diagram is: 

                                                
                                                
                                                
Pen I                                          
                                                
            1              2             3      
                                                
Pen II                                          
                                                
         x      y      x      y      x      y   
                                                
                                                
                                                
Pen III                                         
                                                
       A B C  A B C  A B C  A B C  A B C  A B C 
                                                

 
The first triplet has animal 1 from Pen 1, animal x from pen 2, and animal A from Pen 3. If 
we assign the probabilities to each of the events then that tree diagram is called a probability 
tree.  

2.3 Compound Events 

A compound event is an event composed of two or more events. Consider two events A and 
B. The compound event such that both events A and B occur is called the intersection of the 
events, denoted by A ∩ B. The compound event such that either event A or event B occurs is 
called the union of events, denoted by A ∪ B. The probability of an intersection is P(A ∩ B) 
and the probability of union is P(A ∪ B). Also: 

P(A ∪ B) = P(A) + P(B) - P(A ∩ B)  

The complement of an event A is the event that A does not occur, and it is denoted by Ac. 
The probability of a complement is: 

P(Ac) = 1 - P(A) 

 
 
Example: Let the event A be such that the result of a throw of a die is an even number. Let 
the event B be such that the number is greater than 3. 
The event A is the set: {2,4,6} 
The event B is the set: {4,5,6} 
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The intersection A and B is an event such that the result is an even number and a number 
greater than 3 at the same time. This is the set:  

(A ∩ B) = {4,6} 

with the probability: 

P(A ∩ B) =P(4) + P(6) = 2/6, because the probability of an event is the sum of probabilities 
of the simple events that make up the set. 

 
The union of the events A and B is an event such that the result is an even number or a 
number greater than 3. This is the set: 

(A ∪ B) = {2,4,5,6} 

with the probability 

P(A ∪ B) = P(2) + P(4) + P(5) + P(6) = 4/6 

 
Figure 2.1 presents the intersection and union of the events A and B. 
 

 
Event B Event A 

6 
2 4 5 4 

6

2 4 5 6 

A ∩ B 

A ∪ B 

 

Figure 2.1  Intersection and union of two events 

 
 
A conditional probability is the probability that an event will occur if some assumptions are 
satisfied. In other words a conditional probability is a probability that an event B will occur 
if it is known that an event A has already occurred. The conditional probability of B given A 
is calculated by using the formula: 

( )
)(

)(|
AP

BAPABP ∩
=  

Events can be dependent or independent. If events A and B are independent then: 

P(B | A) = P(B)       and        P(A | B) = P(B)        

If independent the probability of B does not depend on the probability of A. Also, the 
probability that both events occur is equal to the product of each probability: 
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P(A ∩ B) = P(A) P(B)  

If the two events are dependent, for example, the probability of the occurrence of event B 
depends on the occurrence of event A, then: 

( )
)(

)(|
AP

BAPABP ∩
=  

and consequently the probability that both events occur is: 

P(A ∩ B) = P(A) P(B|A) 

An example of independent events: We throw a die two times. What is the probability of 
obtaining two sixes? 
 
We mark the first throw as event A and the second as event B. We look for the probability 
P(A ∩ B). The probability of each event is: P(A) = 1/6, and P(B) = 1/6. The events are 
independent which means: 

P(A ∩ B) = P(A) P(B) = (1/6) (1/6) = (1/36). 

The probability that in two throws we get two sixes is (1/36).  
 
An example of dependent events: From a deck of 52 playing cards we draw two cards. What 
is the probability that both cards drawn are aces? 
 
The first draw is event A and the second is event B. Recall that in a deck there are four aces. 
The probability that both are aces is P(A ∩ B). The events are obviously dependent, namely 
drawing of the second card depends on which card has been drawn first. 

P(A = Ace) = (4/52) = (1/13). 

P(B = Ace | A = Ace) = (3/51), that is, if the first card was an ace, only 51 cards were 
left and only 3 aces. Thus, 

P(A ∩ B) = P(A) P(B|A) =  (4/52) (3/51) = (1/221). 

The probability of drawing two aces is (1/221).  
 
 
Example: In a pen there are 10 calves: 2 black, 3 red and 5 spotted. They are let out one at 
the time in completely random order. The probabilities of the first calf being of a particular 
color are in the following table: 
 

 Ai P(Ai) 
2 black A1 P(black) = 2/10 

3 red A2 P(red) = 3/10 

5 spotted A3 P(spotted) = 5/10 
 

Here, the probability P(Ai) is the relative number of animals of a particular color. We can 
see that: 

Σi P(Ai) = 1 
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Find the following probabilities: 
a) the first calf is spotted, 
b) the first calf is either black or red, 
c) the second calf is black if the first was spotted, 
d) the first calf is spotted and the second black, 
e) the first two calves are spotted and black, regardless of order. 

 
Solutions: 
a) There is a total of 10 calves, and 5 are spotted. The number of favorable outcomes are 
m = 5 and the total number of outcomes is n = 10. Thus, the probability that a calf is spotted 
is:  

P(spotted) = 5/10 = 1/2 

b) The probability that the first calf is either black or red is an example of union. 
P(black or red) = P(black) + P(red) = 2/10 + 3/10 = 5/10 = ½. Also, this is equal to the 
probability that the first calf is not spotted, the complement of the event described in a): 

P(black ∪ red ) = 1 - P(spotted) = 1 - 1/2 = 1/2 

c) This is an example of conditional probability. 
The probability that the second calf is black if we know that the first one was spotted is the 
number of black calves (2) divided by the number of calves remaining after removing a 
spotted one from the pen (9):  

P(black | spotted) = 2/9 

d) This is an example of the probability of an intersection of events. The probability that the 
first calf is spotted is P(spotted) = 0.5. The probability that the second calf is black when the 
first was spotted is: 

P(black | spotted) = 2/9  

The probability that the first calf is spotted and the second is black is the intersection: 
P[spotted  ∩ (black | spotted)] = (5/10) (2/9) = 1/9 

 
e) We have already seen that the probability that the first calf is spotted and the second is 
black is: 

P[spotted ∩ (black | spotted)] = 1/9.  

Similarly, the probability that the first is black and the second is spotted is: 

P[black ∩ (spotted | black)] = (2/10) (5/9) = 1/9  

Since we are looking for a pair (black, spotted) regardless of the order, then we have either 
(spotted, black) or (black, spotted) event. This is an example of union, so the probability is: 

P{[spotted ∩ (black | spotted)] ∪ [black ∩ (spotted | black)]} = (1/9) + (1/9) = 2/9  

We can illustrate the previous examples using a tree diagram: 
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                         First calf                               Second calf 
                                   
                              
                                                                        1 black  (2/10) (1/9)      
                                                                   
                          2  black (2/10)                         3  red  (2/10) (3/9)            
                                                                                        
                                                                        5  spotted  (2/10) (5/9)      
                                                                       
                                   
                                                                        2 black  (3/10) (2/9)       
                                   
                         3  red (3/10)                              2  red  (3/10) (2/9)          
                                      
                                                                        5  spotted  (3/10) (5/9)    
                                 
                                      
                                                                       2  black  (5/10) (2/9)     
                                                                 
                        5 spotted (5/10)                         3  red (5/10) (3/9)           
                                                             
                                                                       4  spotted  (5/10) (4/9)    

 

2.4 Bayes Theorem 

Bayes theorem is useful for stating the probability of some event A if there is information 
about the probability of some event E that happened after the event A. Bayes theorem is 
applied to an experiment that occurs in two or more steps. Consider two cages K1 and K2, in 
the first cage there are three mice, two brown and one white, and in the second there are two 
brown and two white mice. Each brown mouse is designated with the letter B, and each 
white mouse with the letter W. 

Cage K1   Cage K2  
B,B,W  B,B,W,W 

A cage is randomly chosen and then a mouse is randomly chosen from that cage. If the 
chosen mouse is brown, what is the probability that it is from the first cage?  
 
The first step of the experiment is choosing a cage. Since it is chosen randomly, the 
probability of choosing the first cage is P(K1) = (1/2). The second step is choosing a mouse 
from the cage. The probability of choosing a brown mouse from the first cage is 
P(B|K1) = (2/3), and of choosing a brown mouse from the second cage is P(B|K2) = (2/4). The 
probability that the first cage is chosen if it is known that the mouse is brown is an example 
of conditional probability: 

)(
)()( 1

BP
 BKP |BKP 1

∩
=  

The probability that the mouse is from the first cage and that it is brown is: 

P(K1 ∩ B) = P(K1) P(B | K1) = (1/2) (2/3) = (1/3) 
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The probability that the mouse is brown regardless from which cage it is chosen is P(B), 
which is the probability that the brown mouse is either from the first cage and brown, or 
from the second cage and brown: 

P(B) = P(K1) P(B | K1) + P(K2) P(B | K2) = (1/2) (2/3) + (1/2) (2/4) = 7/12  

Those probabilities assigned to the proposed formula: 

P(K1 | B) = (1/3) / (7/12) = 4/7  

Thus, the probability that a mouse is from the first cage if it is known that it is brown is (4/7). 
 
This problem can be presented using Bayes theorem: 

)|()()|()(
)|()( )()()|(

2211
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1 KBPKPKBPKP

KBPKPB / PBK P BKP 1 +
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Generally, there is an event A with k possible outcomes A1, A2,...,Ak, that are independent 

and the sum of their probabilities is 1, (Σi P(Ai) = 1). Also, there is an event E, that occurs 
after event A. Then: 

( )
)|()(......)|()()|()(

)|()(
)(

 )|(
2211 kk

iii
i AEPAPAEPAPAEPAP

AEPAP
EP

EAPEAP
+++

=
∩

=  

To find a solution to some Bayes problems one can use tree diagram. The example with two 
cages and mice can be presented like this: 
 

               B             
                          
                            
        K1                   
                            
                           
               W             
                            
               B            
                              
                             
        K2                   
                            
                           
               W              
                             

( )2
3( )1

2
2
3  

1
2 ( )1

3( )1
2

1
3  

( )2
4( )1

2
2
4  1

2  

( )2
4( )1

2
2
4  

 
From the diagram we can easily read the probability of interest. For example, the probability 
that the mouse is brown and from the first cage is (1/2) (2/3) = (1/3), and the probability that it 
is brown and from the second cage is (1/2) (2/4) = (1/4).  
 
 
Another example: For artificial insemination of some large dairy herd semen from two 
bulls is utilized.  Bull 1 has been used on 60% of the cows, and bull 2 on 40%. We know 
that the percentage of successful inseminations for bull 1 and bull 2 are 65% and 82%, 
respectively. For a certain calf the information about its father has been lost. What is the 
probability that the father of that calf is bull 2? 
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We define: 
P(A1) = 0.6 is the probability of having used bull 1 
P(A2) = 0.4 is the probability of  having used bull 2 
E = the event that a calf is born (because of successful insemination) 
 
P(E | A1) = 0.65 = the probability of successful insemination if bull 1 
P(E | A2) = 0.82 = the probability of successful insemination if bull 2 

 
( )

=
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∩
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=
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Thus, the probability that the father of that calf is bull 2 is 0.457.  

Exercises 

2.1. In a barn there are 9 cows. Their previous lactation milk records are: 
 

Cow 1 2 3 4 5 6 7 8 9 

Milk (kg) 3700 4200 4500 5300 5400 5700 6100 6200 6900 
 
If we randomly choose a cow what is the probability: a) that it produced more than 5000 kg, 
b) that it produced less than 5000 kg? If we randomly choose two cows what is the 
probability: c) that both cows produced more than 5000 kg, d) that at least one cow 
produced more than 5000 kg, e) that one cow produced more than 4000 kg, and the other 
produced more than 5000 kg?  
 



 

26 

Chapter 3  
 
Random Variables and their Distributions 

A random variable is a rule or function that assigns numerical values to observations or 
measurements. It is called a random variable because the number that is assigned to the 
observation is a numerical event which varies randomly. It can take different values for 
different observations or measurements of an experiment. A random variable takes a 
numerical value with some probability. 

Throughout this book, the symbol y will denote a variable and yi will denote a 
particular value of an observation i. For a particular observation letter i will be replaced 
with a natural number (y1, y2, etc). The symbol y0 will denote a particular value, for 
example, y ≤ y0 will mean that the variable y has all values that are less than or equal to 
some value y0. 

Random variables can be discrete or continuous. A continuous variable can take on all 
values in an interval of real numbers. For example, calf weight at the age of six months 
might take any possible value in an interval from 160 to 260 kg, say the value of 180.0 kg 
or 191.23456 kg; however, precision of scales or practical use determines the number of 
decimal places to which the values will be reported. A discrete variable can take only 
particular values (often integers) and not all values in some interval. For example, the 
number of eggs laid in a month, litter size, etc. 

The value of a variable y is a numerical event and thus it has some probability. A table, 
graph or formula that shows that probability is called the probability distribution for the 
random variable y. For the set of observations that is finite and countable, the probability 
distribution corresponds to a frequency distribution. Often, in presenting the probability 
distribution we use a mathematical function as a model of empirical frequency. Functions 
that present a theoretical probability distribution of discrete variables are called probability 
functions. Functions that present a theoretical probability distribution of continuous 
variables are called probability density functions.  

3.1 Expectations and Variances of Random Variables 

Important parameters describing a random variable are the mean (expectation)  and 
variance. The term expectation is interchangeable with mean, because the expected value of 
the typical member is the mean. The expectation of a variable y is denoted with: 

E(y) = µy 

The variance of y is: 

Var(y) = σ2
y = E[(y – µy)2] = E(y2) – µy

2 
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which is the mean square deviation from the mean. Recall that the standard deviation is the 
square root of the variance: 

2  σσ =  

There are certain rules that apply when a constant is multiplied or added to a variable, or 
two variables are added to each other.  
 
1) The expectation of a constant c is the value of the constant itself: 

E(c) = c 

2) The expectation of the sum of a constant c and a variable y is the sum of the constant and 
expectation of the variable y: 

E(c + y) = c + E(y) 

This indicates that when the same number is added to each value of a variable the mean 
increases by that number. 
 
3) The expectation of the product of a constant c and a variable y is equal to the product of 
the constant and the expectation of the variable y: 

E(cy) = cE(y) 

This indicates that if each value of the variable is multiplied by the same number, then the 
expectation is multiplied by that number. 
 
4) The expectation of the sum of two variables x and y is the sum of the expectations of the 
two variables: 

E(x + y) = E(x) + E(y) 

5) The variance of a constant c is equal to zero: 

Var(c) = 0 

6) The variance of the product of a constant c and a variable y is the product of the squared 
constant multiplied by the variance of the variable y: 

Var(cy) = c2 Var(y) 

7) The covariance of two variables x and y: 

Cov(x,y) = E[(x – µx)(y – µy)] =  

  = E(xy) – E(x)E(y) =  

  = E(xy) – µxµy  

The covariance is a measure of simultaneous variability of two variables. 
 
8) The variance of the sum of two variables is equal to the sum of the individual variances 
plus two times the covariance: 

Var(x + y) = Var(x) + Var(y) + 2Cov(x,y) 
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3.2 Probability Distributions for Discrete Random Variables 

The probability distribution for a discrete random variable y is the table, graph or formula 
that assigns the probability P(y) for each possible value of the variable y. The probability 
distribution P(y) must satisfy the following two assumptions: 

1) 0 ≤ P(y) ≤ 1 

The probability of each value must be between 0 and 1, inclusively.  

2) Σ(all y) P(y) = 1 

The sum of probabilities of all possible values of a variable y is equal to 1. 
 
 
Example: An experiment consists of tossing two coins. Let H and T denote head and tail, 
respectively. A random variable y is defined as the number of heads in one tossing of two 
coins. Possible outcomes are 0, 1 and 2. What is the probability distribution for the variable 
y? 
 
The events and associated probabilities are shown in the following table. The simple events 
are denoted with E1, E2, E3 and E4. There are four possible simple events HH, HT, TH, and 
TT. 
 

Simple event Description y P(y) 
E1  HH 2 1/4 
E2  HT 1 1/4 
E3  TH 1 1/4 
E4  TT 0 1/4 

 
From the table we can see that: 

The probability that y = 2 is P(y = 2) = P(E1) = 1/4 . 
The probability that y = 1 is P(y = 1) = P(E2) + P(E3) = 1/4 + 1/4 = 1/2 . 
The probability that y = 0 is P(y = 0) = P(E4) = 1/4. 

 
Thus, the probability distribution of the variable y is: 
 

y P(y) 
0 1/4  
1 1/2  
2 1/4 

 
Checking the previously stated assumptions:  

1. 0 ≤ P(y) ≤ 1 

2. Σ(all y) P(y) = P(y = 0) + P(y = 1) + P(y = 2) = ¼ + ½ + ¼ = 1 
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A cumulative probability distribution F(yi) describes the probability that a variable y has 
values less than or equal to some value yi: 

F(yi) = P(y ≤ yi) 

 
 
Example: For the example of tossing two coins, what is the cumulative distribution? 
 
We have: 
 

y P(y) F(y) 
0 1/4 

1/4
 

1 1/2 
3/4

 

2 1/4 
4/4

 

 
For example, the probability F(1) = 3/4 denotes the probability that y, the number of heads, 
is 0 or 1, that is, in tossing two coins that we have at least one tail (or we do not have two 
heads).  
 
 
3.2.1 Expectation and Variance of a Discrete Random Variable 

The expectation or mean of a discrete variable y is defined: 

E(y) = µ = Σi P(yi) yi     i = 1,…, n  

The variance of a discrete random variable y is defined: 

Var(y) = σ2 = E{[y – E(y)]2} = Σi P(yi) [yi – E(y)]2  i = 1,…, n 

 
 
Example: Calculate the expectation and variance of the number of heads resulting from 
tossing two coins.  
 
Expectation: 

E(y) = µ = Σi P(yi) yi = (1/4) (0) + (1/2) (1) + (1/4) (2) = 1 

The expected value is one head and one tail when tossing two coins. 
 
Variance: 

Var(y) = σ2 = Σi P(yi) [yi – E(y)]2 = (1/4) (0 – 1)2 + (1/2) (1 – 1)2 + (1/4) (2 – 1)2 = (1/2)  

 
 
Example: Let y be a discrete random variable with values 1 to 5 with the following 
probability distribution: 
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y 1 2 3 4 5 
Frequency 1 2 4 2 1 
P(y) 1/10 

2/10 
4/10 

2/10 
1/10 

 
Check if the table shows a correct probability distribution. What is the probability that y is 
greater than three, P(y > 3)? 
 

1) 0 ≤ P(y) ≤ 1 ⇒  OK 

2) Σi P(yi) = 1 ⇒  OK 

 
The cumulative frequency of y = 3 is 7. 

F(3) = P(y ≤ 3) = P(1) + P(2) + P(3) = (1/10) + (2/10) + (4/10) = (7/10)  
P(y > 3) = P(4) + P(5) = (2/10) + (1/10) = (3/10)  
P(y > 3) = 1 – P(y ≤ 3) = 1 – (7/10) = (3/10)  

 
Expectation:  

E(y) = µ = Σi yi P(yi) = (1) (1/10) + (2) (2/10) + (3) (4/10) + (4) (2/10) + (5) (1/10) = (30/10) = 3 

 
Variance:  

Var(y) = σ2 = E{[y – E(y)]2} = Σi P(yi) [yi – E(y)]2 =  
(1/10) (1 – 3)2 + (2/10) (2 – 3)2 + (4/10) (3 – 3)2 +(2/10) (4 – 3)2 + (1/10) (5 – 3)2 = 1.2 

 
 
3.2.2 Bernoulli Distribution 

Consider a random variable that can take only two values, for example Yes and No, or 0 
and 1. Such a variable is called a binary or Bernoulli variable. For example, let a variable y 
be the incidence of some illness. Then the variable takes the values: 
yi = 1 if an animal is ill 
yi = 0 if an animal is not ill  
 
The probability distribution of y has the Bernoulli distribution: 

yyqpyp −= 1)(  for y = 0,1 

Here, q = 1 – p 
 
Thus, 

P(yi = 1) = p 

P(yi = 0) = q 

The expectation and variance of a Bernoulli variable are: 

E(y) = µ = p         and         σ2 = Var(y) = σ2 = pq 
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3.2.3 Binomial Distribution 

Assume a single trial that can take only two outcomes, for example, Yes and No, success 
and failure, or 1 and 0. Such a variable is called a binary or Bernoulli variable. Now assume 
that such single trial is repeated n times. A binomial variable y is the number of successes in 
those n trials. It is the sum of n binary variables. The binomial probability distribution 
describes the distribution of different values of the variable y {0, 1, 2, …, n} in a total of n 
trials. Characteristics of a binomial experiment are: 
 

1) The experiment consists of n equivalent trials, independent of each other 
2) There are only two possible outcomes of a single trial, denoted with Y (yes) and N 

(no) or equivalently 1 and 0 
3) The probability of obtaining Y is the same from trial to trial, denoted with p. The 

probability of N is denoted with q, so p + q = 1 
4) The random variable y is the number of successes (Y) in the total of n trials. 

 
The probability distribution of a random variable y is determined by the parameter p and the 
number of trials n: 

ynyqp
y
n

yP −








=)(                    y = 0,1,2,...,n 

where: 
p = the probability of success in a single trial 
q = 1 – p = the probability of failure in a single trial 

 
The expectation and variance of a binomial variable are: 

E(y) = µ = np               and             Var(y) = σ2 = npq 

The shape of the distribution depends on the parameter p. The binomial distribution is 
symmetric only when p = 0.5, and asymmetric in all other cases. Figure 3.1 presents two 
binomial distributions for p = 0.5 and p = 0.2 with n = 8. 
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Figure 3.1  Binomial distribution (n = 8): A) p = 0.5 and B) p = 0.2 

The binomial distribution is used extensively in research on and selection of animals, 
including questions such as whether an animal will meet some standard, whether a cow is 
pregnant or open, etc. 
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Example: Determine the probability distribution of the number of female calves in three 
consecutive calvings. Assume that only a single calf is possible at each calving, and that the 
probability of having a female in a single calving is p = 0.5. 
 
The random variable y is defined as the number of female calves in three consecutive 
calvings. Possible outcomes are 0, 1, 2 and 3. The distribution is binomial with p = 0.5 and 
n = 3: 
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Possible values with corresponding probabilities are presented in the following table: 
 

y p(y) 
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
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125.0)5.0()5.0(
3
3
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





  

 
The sum of the probabilities of all possible values is: 

Σi p(yi) = 1 

The expectation and variance are: 

µ = E(y) = np = (3)(0.5) = 1.5  
σ2 = var(y) = npq = (3)(0.5)(0.5) = 0.75 

 
 
Another example: In a swine population susceptibility to a disease is genetically 
determined at a single locus. This gene has two alleles: B and b. The disease is associated 
with the recessive allele b, animals with the genotype bb will have the disease, while 
animals with Bb are only carriers. The frequency of the b allele is equal to 0.5. If a boar and 
sow both with Bb genotypes are mated and produce a litter of 10 piglets: a) how many 
piglets are expected to have the disease; b) what is the probability that none of the piglets 
has the disease; c) what is the probability that at least one piglet has the disease; d) what is 
the probability that exactly a half of the litter has the disease. 
 
The frequency of the b allele is 0.5. The probability that a piglet has the disease (has the bb 
genotype) is equal to (0.5)(0.5) = 0.25. Further, the probability that a piglet is healthy is 
1 - 0.25 = 0.75. Thus, a binomial distribution with p = 0.25 and n = 10 can be used.  
 
a) Expectation = np = 2.5, that is, between two and three piglets can be expected to have the 
disease. 
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c) P(y ≥1) = 1 – P(y = 0) = 1 – 0.056 = 0.944 

d) 058.0)75.0()25.0(
!5!5
!10

5
10

)5( 5555 ==







== qpyP  

 
 
Third example: A farmer buys an expensive cow with hopes that she will produce a future 
elite bull. How many calves must that cow produce such that the probability of having at 
least one male calf is greater than 0.99. 
 
Solution: Assume that the probability of having a male calf in a single calving is 0.5. For at 
least one male calf the probability must be greater than 0.99: 

P(y ≥ 1) > 0.99  

Using a binomial distribution, the probability that at least one calf is male is equal to one 
minus the probability that n calves are female:  

P(y ≥ 1) = 1 – P(y < 1) = 1 – P(y = 0) = 1 – ( ) ( )nn
2
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2
1
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2
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Solving for n in this inequality:  
n > 6.64 

Or rounded to an integer: 
n = 7 

 
 
3.2.4 Hyper-geometric Distribution 

Assume a set of size N with R successes and N – R failures. A single trial has only two 
outcomes, but the set is finite, and each trial depends on the outcomes of previous trials. The 
random variable y is the number of successes in a sample of size n drawn from the source 
set of size N. Such a variable has a hyper-geometric probability distribution: 


















−
−










=

n
N

yn
RN

y
R

yP )(  

where: 
y = random variable, the number of successful trials in the sample 
n = size of the sample 
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n – y = the number of failures in the sample 
N = size of the source set 
R = the number of successful trials in the source set 
N – R = the number of failures in the source set 

 
Properties of a hyper-geometric distribution are: 

1) n < N    
2) 0 < y < min(R,n)  

The expectation and variance are: 
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Example: In a box, there are 12 male and 6 female piglets. If 6 piglets are chosen at 
random, what is the probability of getting five males and one female? 
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Thus, the probability of choosing five male and one female piglets is 0.2559.  
 
 
3.2.5 Poisson Distribution 

The Poisson distribution is a model for the relative frequency of rare events and data 
defined as counts and often is used for determination of the probability that some event will 
happen in a specific time, volume or area. For example, the number of microorganisms 
within a microscope field, or the number of mutations or distribution of animals from some 
plot may have a Poisson distribution. A Poisson random variable y is defined as how many 
times some event occurs in specific time, or given volume or area. If we know that each 
single event occurs with the same probability, that is, the probability that some event will 
occur is equal for any part of time, volume or area, and the expected number of events is λ, 
then the probability function is defined as: 

!
 )(

y
e yP

yλλ−

=  

where λ is the average number of successes in a given time, volume or area, and  e is the 
base of the natural logarithm (e = 2.71828). 

Often, instead of the expected number, the proportion of successes is known, which is 
an estimate of the probability of success in a single trial (p). When p is small and the total 
number of trials (n) large, the binomial distribution can be approximated with a Poisson 
distribution, λ = np. 

A characteristic of the Poisson variable is that both the expectation and variance are 
equal to the parameter λ: 



Chapter 3  Random Variables and their Distributions  35 

 

E(y) = µ = λ      and       Var(y) = σ2 = λ 

 
 
Example: In a population of mice 2% have cancer. In a sample of 100 mice, what is the 
probability that more than one mouse has cancer? 
µ = λ = 100 (0.02) = 2   (expectation, the mean is 2% of 100) 

!
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y
eyP
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=  

P(y > 1) = 1 – P(y =0) – P(y = 1) = 1 – 0.1353 – 0.2706 = 0.5941 

The probability that in the sample of 100 mice more than one mouse has cancer is 0.5941. 
 
 
3.2.6 Multinomial Distribution 

The multinomial probability distribution is a generalization of the binomial distribution. The 
outcome of a single trial is not only Yes or No, or 1 or 0, but there can be more than two 
outcomes. Each outcome has a probability. Therefore, there are k possible outcomes of a 
single trial, each with its own probability: p1, p2,..., pk. Single trials are independent. The 
numbers of particular outcomes in a total of n trials are random variables, that is, y1 for 
outcome 1; y2 for outcome 2; ..., yk for outcome k. The probability function is: 

ky
k
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yyy
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21
21

21 =   

Also,  
n = y1 + y2+ ... + yk  
p1 + p2 + ... + pk = 1 

 
The number of occurrences yi of an outcome i has its expectation and variance: 

E(yi) = µi = npi          and         Var(yi) = σ2
i = npi(1 – pi)  

The covariance between the numbers of two outcomes i and j is: 

Cov(yi,yj) = –npipj 

 
 
Example: Assume calving ease is defined in three categories labeled 1, 2 and 3. What is the 
probability that out of 10 cows, 8 cows are in the first category, one cow in the second, and 
one cow in the third, if the probabilities for a single calving to be in categories 1, 2 and 3 are 
0.6, 0.3 and 0.1, respectively? What is the expected number of cows in each category? 

p1 = 0.6,  p2 = 0.3,  p3 = 0.1  

n = 10,  y1 = 8,  y2 = 1,  y3 = 1 

== 321
321

321
321 !!!

!),,( yyy ppp
yyy

nyyyp 0.045  (0.1)(0.3) (0.6)
!1!1!8

!10)1,1,8( 118 ==p  
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The probability that out of 10 cows exactly 8 are in category 1, one in category 2 , and 1 in 
category 3 is 0.045. 
 
The expected number in each category is: 

µ1 = np1 = 10 (0.6) = 6,    µ2 = np2 = 10 (0.3) = 3,   µ3 = np3 = 10 (0.1) = 1 

For 10 cows, the expected number of cows in categories 1, 2 and 3, are 6, 3 and 1, 
respectively.  
 
 

3.3 Probability Distributions for Continuous Random Variables 

A continuous random variable can take on an uncountable and infinite possible number of 
values, and because of that it is impossible to define the probability of occurrence of any 
single numerical event. The value of a single event is a point, a point does not have a 
dimension, and consequently the probability that a random variable has a specific value is 
equal to zero. Although it is not possible to define the probability of a particular value, the 
probability that a variable y takes values in some interval is defined. A probability is defined 
to the numerical event that is applicable to that interval. For example, take weight of calves 
as a random variable. Numbers assigned to the particular interval depend on the precision of 
the measuring device or practical usefulness. If the precision is 1 kg, a measurement of 220 
kg indicates a value in the interval from 219.5 to 220.5 kg. Such a numerical event has a 
probability. A function used to model the probability distribution of a continuous random 
variable is called the probability density function.  

A cumulative distribution function F(y0) for a random variable y, which yields values 
y0 is: 

F(y0) = P(y ≤ y0) 

From the previous example, F(220) represents the probability of all measurements less than 
220 kg. A property of a continuous random variable is that its cumulative distribution 
function is continuous.  
 
If a random variable y contains values between y0 and y0 + ∆y, a density function is defined: 

y
yyyyPyf y ∆
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It follows that:  

f(y) = dF(y) / dy 

The density function is the first derivative of the cumulative distribution function. The 
cumulative distribution function is: 

∫ ∞−
=

0 )()( 0

y
dyyfyF , 

an integral of the function representing the area under the density function in the interval 
(-∞, y). 
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A function is a density function if it has the following properties: 

1) f(yi) ≥ 0 

2) ∫
∞

∞−

= 1)( dyyf   

or written differently  P(–∞≤ y ≤ +∞) = 1, that is, the probability that any value of y 
occurs is equal to 1. 

 
The probability that y is any value between y1 and y2 is: 
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which is the area under f(y) bounded by y1 and y2. 
 
The expected value of a continuous random variable y is: 

∫
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== dyyfyyE y )( )( µ  

The variance of a continuous variable y is: 
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Again the properties of a continuous variable are: 

1) The cumulative distribution F(y) is continuous; 
2) The random variable y has infinite number of values; 
3) The probability that y has a particular value is equal to zero. 

 
 
3.3.1 Uniform Distribution  

The uniform variable y is a variable that has the same probability for any value yi in an 
interval (a ≤ y ≤ b). The density function is: 
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The expectation and variance are: 
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3.3.2 Normal Distribution 

The normal curve models the frequency distributions of many biological events. In addition, 
many statistics utilized in making inferences follow the normal distribution. Often, the 
normal curve is called a Gauss curve, because it was introduced by C. F. Gauss as a model 
for relative frequency of measurement error. The normal curve has the shape of a bell, and 
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its location and form are determined by two parameters, the mean µ and variance σ2. The 
density function of normal distribution is: 

( ) 22 2

22

1)( σµ

πσ
−−= yeyf  –∞ < y < +∞ 

where µ and σ2 are parameters, e is the base of the natural logarithm (e = 2.71828...) and  
π = 3.14.. . The following describe a variable y as a normal random variable: 

y ∼ N (µ, σ2) 

The parameters µ and σ2 are the mean and variance of the distribution. Recall, that the 
standard deviation is: 

2σσ =  

and represents the mean deviation of values from the mean.  

 
Figure 3.2  Normal or Gauss curve 

 
The normal curve is symmetric about its mean, and the maximum value of its ordinate 
occurs at the mean of y, i.e. (f(µ) = maximum). That indicates that the mode and median are 
equal to the mean. In addition, the coefficient of skewness is equal to zero: 
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The coefficient of kurtosis is also equal to zero: 
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The inflection points of the curve are at (µ – σ) and (µ + σ), the distance of ± 1 standard 
deviation from the mean. Within the interval µ ± 1.96σ there are theoretically 95% 
observations (Figure 3.3): 

P(µ±1.96σ ≤ y ≤ µ±1.96σ) = 0.95 

µ y

f(y)
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Figure 3.3  Some characteristics of the normal curve 

Height and dispersion of the normal curve depend on the variance σ2, (or the standard 
deviation σ). Higher σ leads to decreased height of the curve and increased dispersion. 
Figure 3.4 shows two curves with σ = 1 and σ = 1.5. Both curves have the same central 
location, µ = 0. 
 

 
Figure 3.4  Normal curves with standard deviations σ = 1 and σ = 1.5 

 
As for all density functions, the properties of the normal density function are: 

1) f(yi) ≥ 0, 

2) ∫
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The probability that the value of a normal random variable is in an interval (y1, y2) is: 
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This corresponds to the area under the normal curve bounded with values y1 and y2, when 
the total area under the curve is defined as 1 or 100% (Figure 3.5). The area bounded with 
values y1 and y2 is the proportion of values between y1 and y2 with respect to all possible 
values. 
 

 

µ  

y1 y2  y  

f(y) 

 
Figure 3.5  Area under the normal curve bounded with values y1 and y2 

 
The value of a cumulative distribution for some value y0, F(y0) = P(y ≤ y0), is explained by 
the area under the curve from –∞ to y0 (Figure 3.6). 
 

 

µ y0 
y 

f(y) 

 
Figure 3.6  Value of the cumulative distribution for y0 corresponds to the shaded area 
under the curve 

 
The value of the cumulative distribution for the mean µ is equal to 0.5, because the curve is 
symmetric: 

F(µ) = P(y ≤ µ) = 0.5 

The shape of the normal curve depends only on the standard deviation σ , thus all normal 
curves can be standardized and transformed to a standard normal curve with µ = 0 and 
σ = 1. The standardization of a random normal variable y, symbolized by z, implies that its 
values are expressed as deviations from the mean in standard deviation units: 
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The values of standard normal variable z tell us by how many standard deviations the values 
of y deviate from the mean. True values of y can be expressed as: 

y = µ + z σ  

A density function of the standard normal variable is: 
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where e is the base of the natural logarithm (e = 2.71828...) and π = 3.14... That some 
variable z is a standard normal variable is usually written as: 

z ∼ Z or z ∼ N(0, 1)      

A practical importance of this transformation is that there is just one curve to determine the 
area under the curve bounded with some interval. Recall, that the area under the curve over 
some interval (y1,y2) is equal to the probability that a random variable y takes values in that 
interval. The area under the curve is equal to the integral of a density function. Since an 
explicit formula for that integral does not exist, a table is used (either from a book or 
computer software). The standardization allows use of one table for any mean and variance 
(See the table of areas under the normal curve, Appendix B). The probability that a variable 
y takes values between y1 and y2 is equal to the probability that the standard normal variable 
z takes values between the corresponding values z1 and z2: 

P(y1 ≤ y ≤ y2) = P(z1 ≤ z ≤ z2)  

where 
σ

µ−
= 1

1
yz  and 

σ
µ−

= 2
2

yz  

 
For example, for a normal curve P(–1.96σ ≤ y ≤ 1.96σ) = 0.95. For the standard normal 
curve P(–1.96 ≤ z ≤ 1.96) = 0.95. The probability is 0.95 that the standard normal variable z 
is in the interval –1.96 to +1.96 (Figure 3.7). 

 

 0 

 95% 

 -1  1.96 1.96  1 z 

f(z) 

 
Figure 3.7  Standard normal curve (µ = 0 and σ 

2 = 1) 
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A related question is, what is the mean of selected values? The standard normal curve can 
also be utilized in finding the values of a variable y determined with a given probability. 
Figure 3.8 shows that concept. Here, zS is the mean of z values greater than z0, z > z0. For the 
standard normal curve, the mean of selected animals is: 

P
zzS
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where P is the area under the standard normal curve for z>z0, and z' is the ordinate for the 

value z0. Recall that 
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 P 

f(z) 

z' 

 
Figure 3.8  The mean of selected z values. z' = the curve ordinate for z = z0, P = area 
under the curve, i.e., the probability P(z>z0), and zS is the mean of z > z0 

 
 
Example: Assume a theoretical normal distribution of calf weights at age 6 months defined 
with µ = 200 kg and σ = 20 kg. Determine theoretical proportions of calves: a) more than 
230 kg; b) less than 230 kg; c) less than 210 and more than 170 kg; d) what is the 
theoretical lowest value for an animal to be included among the heaviest 20%; e) what is the 
theoretical mean of animals with weights greater than 230 kg? 
 
a) The proportion of calves weighing more than 230 kg also denotes the probability that a 
randomly chosen calf weighs more than 230 kg. This can be shown by calculating the area 
under the normal curve for an interval y > y0 = 230, that is P(y > 230) (Figure 3.9).  
 
First, determine the value of the standard normal variable, z0, which corresponds to the 
value y0 = 230 (Figure 3.9). 

20
200230

0
−

=z = 1.5 

This indicates that 230 is 1.5 standard deviations above the mean. 
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Figure 3.9  Normal curve with the original scale y and standard normal scale z. The value 
y0 = 230 corresponds to the value z0 = 1.5 

 
The probability that y is greater than y0 is equal to the probability that z is greater than z0. 

P(y > y0) = P(z > z0) = P(z > 1.5) = 0.0668 

The number 0.0668 can be read from the table (Appendix B: Area under the standard 
normal curve) for the value of z0 = 1.5. The percentage of calves expected to be heavier than 
230 kg is 6.68%. 
 
b) Since the total area under the curve is equal to 1, then the probability that y has a value 
less than y0 = 230 kg is: 

P(y < y0) = P(z < z0) = 1 – P(z > 1.5) = 1 – 0.0668 = 0.9332  

This is the value of the cumulative distribution for y0 = 230 kg: 

F(y0) = F(230) = P(y ≤ y0) = P(y ≤ 230) 

Note that P(y ≤ y0) = P(y < y0) because P(y = y0) = 0. 
Thus, 93.32% of calves are expected to weigh less than 230 kg. 
 
c) y1 = 170 kg, y2 = 210 kg 
 
The corresponding standardized values, z1 and z2 are: 

5.1
20

200170
1 −=

−
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5.0
20

200210
2 =

−
=z  

Find the probability that the variable takes values between –1.5 and 0.5 standard deviations 
from the mean (Figure 3.10).  
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Figure 3.10  Area under the normal curve between 170 and 210 kg 

 
The probability that the values of y are between 170 and 210 is: 

P(y1 ≤ y ≤ y2) = P(170 ≤ y ≤ 210) = P(z1 ≤ z ≤ z2) = P(–1.5 ≤ z ≤ 0.5)  

Recall, that the curve is symmetric, which means that: 

P(z ≤ –z0) = P(z ≥ z0)    or for this example: 

P(z ≤ –1.5) = P(z ≥ 1.5) 

The following values are from the table Area under the standard normal curve (Appendix 
B): 

P(z > 1.5) = 0.0668  

P(z > 0.5) = 0.3085 
Now: 

P(170 ≤ y ≤ 210) = P(–1.5 ≤ z ≤ 0.5) =1 – [P(z > 1.5) + P(z > 0.5)] =  

1 – (0.0668 + 0.3085) = 0.6247 
 
Thus, 62.47% of calves are expected to have weights between 170 and 210 kg. 
 
d) The best 20% corresponds to the area under the standard normal curve for values greater 
than some value z0: 

P(z0 ≤ z ≤ +∞ ) = 0.20 

First z0 must be determined. From the table the value of z0 is 0.84. Now, z0 must be 
transformed to y0, on the original scale using the formula: 

σ
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that is:  
y0 = µ + z0 σ  

y0 = 200 + (0.84)(20) = 216.8 kg 
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Animals greater than or equal to 216.8 kg are expected to be among the heaviest 20%. 
 
e) The corresponding z value for 230 kg is: 
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From the table of areas under the normal curve: 

P(z > z0) = 1 – P(z ≤ z0) = 0.0668 

The ordinate for z0 = 1.5 is: 
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The mean of the standardized values greater than 1.5 is: 
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Transformed to the original scale: 

yS = µ + z0 σ = 200 + (1.94)(20) = 238.8 kg 

Thus, the mean of the selected animals is expected to be 238.8 kg.  
 
 
3.3.3 Multivariate Normal Distribution 

Consider a set of n random variables y1, y2, …, yn with means µ1, µ2, …, µn, variances σ1
2, 

σ2
2,…, σn

2, and covariances among them σ12, σ13,…, σ(n-1)n. These can be expressed as 
vectors and a matrix as follows: 
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where V denotes the variance-covariance matrix of the vector y. 
The vector y has a multivariate normal distribution y ~ N(µ, V) if its probability density 
function is: 
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where |V| denotes the determinant of V. 
 
Some useful properties of the multivariate normal distribution include: 

1) E(y) = µ   and Var(y) = V 
2) The marginal distribution of yi is N(µi, σi

2)   
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3) The conditional distribution of yi | yj is ( ) 
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Generally, expressing the vector y as two subvectors 
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N , the conditional distribution of y1 | y2 is:  

f (y1 | y2 ) ~ ( )( )21
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Example: For weight (y1) and heart girth (y2) of cows, the following parameters are known:  
µ1 = 660 kg and µ2 = 220 cm; σ1

2= 17400 and σ2
2= 4200; and σ12 = 5900.   

 
These can be expressed as: 
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The bivariate normal probability density function of weight and heart girth is:  
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The conditional mean of weight given the value of heart girth, for example y2 = 230, is: 

( ) ( ) 0.674220230
4200
5900660)230|( 222

2

12
121 =−+=−+== µ

σ
σµ yyyE  

Note that this is also the regression of weight on heart girth. The conditional variance of 
weight given the value of heart girth is: 

9.9111
4200

)5900)(5900(17400)|( 21 =−=yyVar  

The conditional distribution of weight given the value of heart girth y2 = 230 is: 

f (y1 | y2 = 230) ~ N (633.4, 9111.9) 

 
 
Example: Assume a vector of data y such that the elements of the vector are independent 
and identically distributed, all have the same mean µ and variance σ2, and the covariance 
among them is zero.   
Assume that y has a multivariate normal distribution with mean E(y) = µ = 1µ  and variance 
Var(y) = Iσ2. 
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Here 1 is a vector of ones and I is an identity matrix. 

Then | Iσ2| = (σ2)n and ( ) ( ) ( )2

2
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independent, the density function is: 
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Here, Πi is the product symbol.  
 
 
3.3.4 Chi-square Distribution 

Consider a set of standard normal random variables zi, (i = 1,…, v), that are identical and 
independently distributed with the mean µ = 0 and standard deviation σ = 1. Define a 
random variable:  

χ2 = Σi z2
i  i = 1,…, v 

The variable χ2 has a chi-square distribution with v degrees of freedom. The shape of the 
chi-square distribution depends on degrees of freedom. Figure 3.11 shows chi-square 
density functions with 2, 6 and 10 degrees of freedom. 
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Figure 3.11  The density functions of χ2 variables with v = 2, v = 6 and v = 10 degrees of 
freedom 

 
The expectation and variance of a χ2 variable are: 

E [χ2] = v      and      Var [χ2] = 2v  
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Because the mean of the standard normal variable is equal to zero, this chi-square 
distribution is called a central chi-square distribution. A noncentral chi-square distribution 
is: 

χ2 = Σi y2
i i = 1,…, v; v is degrees of freedom 

where yi is a normal variable with mean µi and variance σ2 = 1. This distribution is defined 

by degrees of freedom and the noncentrality parameter λ = Σi µ2
i, (i = 1,…, v). 

 
The expectation of the noncentral χ2

v variable is: 

E[χ2] = v + λ 

Comparing the noncentral to the central distribution, the mean is shifted to the right for the 
parameter λ. Figure 3.12 presents a comparison of central and noncentral chi-square 
distributions for different λ. 
 

 
Figure 3.12  Central (λ = 0) and noncentral (λ = 2 and λ = 5) chi-square distributions with 
v = 6 degrees of freedom 

 
 
3.3.5 Student t Distribution 

Let z be a standard normal random variable with µ = 0 and σ = 1, and let χ2 be a chi-square 
random variable with v degrees of freedom. Then: 

v

zt
2χ

=  

is a random variable with a Student t distribution with v degrees of freedom.  
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Figure 3.13  The density functions of t variables with degrees of freedom v = 2 and v =16 

 
The shape of the Student t distribution is similar to that of the normal distribution, only by 
decreasing the degrees of freedom, the curve flattens in the middle and it is more expanded 
(‘fatter’) toward the tails (Figure 3.13). The expectation and variance of the t variable are: 

E [t] = 0      and      [ ]
2−

=
v

vtVar  

Because the numerator of t variable is a standard normal variable (centered around zero), 
this t distribution is often called a central t distribution. A noncentral t distribution is a 
distribution of:  

v

yt
2χ

=  

where y is a normal variable with the mean µ and variance σ2 = 1. This distribution is 
defined by degrees of freedom and the noncentrality parameter λ. Figure 3.14 presents a 
comparison of central and noncentral t distribution with 20 degrees of freedom.  
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Figure 3.14  Central (λ = 0) and noncentral (λ = 2) t distributions with v = 20 degrees of 
freedom 

 
 
3.3.6 F Distribution 

Let χ2
1 and χ2

2 be two independent chi-square random variables with v1 and v2 degrees of 
freedom, respectively. Then: 

2
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2
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v
vF

χ
χ

=   

is a random variable with an F distribution with degrees of freedom v1 and v2. The shape of 
the F distribution depends on the degrees of freedom (Figure 3.15).  
 

 
Figure 3.15  The density function of F variables with degrees of freedom:  
a) v1 = 2, v2 = 6; b) v1 = 6, v2 = 10; c) v1 =10, v2 = 20 
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The expectation and variance of the F variable are: 
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If the χ2
1 variable in the numerator has a noncentral chi-square distribution with a 

noncentrality parameter λ, then the corresponding F variable has a noncentral F distribution 
with the noncentrality parameter λ.  
 
The expectation of the noncentral F variable is: 
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It can be seen that the mean is shifted to the right compared to the central distribution. 
Figure 3.16 presents a comparison of central and noncentral F distributions with different 
parameters λ.  
 

 
Figure 3.16  Central (λ = 0) and noncentral (λ = 5 and λ =10) F distributions with v1 = 6 
and v2 =10 degrees of freedom 

Exercises  

3.1. The expected proportion of cows with more than 4000 kg milk in the standard lactation 
is 30%. If we buy 10 cows, knowing nothing about their previous records, what is the 
probability: a) that exactly 5 of them have more than 4000 kg milk yield, b) that at least two 
have more than 4000 kg? 
 
3.2. What is the ordinate of the standard normal curve for z = –1.05? 
 
3.3. Assume a population of dairy cows with mean milk fat yield in a lactation of 180 kg, 
and standard deviation of 36 kg.  
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What are the theoretical proportion of cows: a) with less than 180 kg fat, b) with more than 
250 kg fat, c) with less than 200 and more than 190 kg of fat, d) if the best 45% of cows are 
selected, what is the theoretical minimal fat yield an animal would have to have to be 
selected, e) what is the expected mean of the best 45% of animals? 
 
3.4. Let the expected value of a variable y be E(y) = µ = 50. Let the variance be 
Var(y) = σ2 = 10. Calculate the following expectations and variances:  

a) E(2 + y) =  b) Var(2 + y) =  
c) E(2 + 1.3y) =  d) Var(2 + 1.3y) =  
e) E(4y + 2y) =  f) Var(4y + 2y) =  

 
3.5. Assume a population of dairy cows with mean fat percentage of 4.1%, and standard 
deviation of 0.3%. What are the theoretical proportions of cows: a) with less than 4.0% fat; 
b) with more than 4.0% fat; c) with more than 3.5% and less than 4.5%; d) if the best 25% 
of cows are selected, what is the theoretical lowest value an animal would have to have to 
be included in the best 20%; e) what is the mean of the best 25% of cows? 
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Chapter 4  
 
Population and Sample 

A population is a set of all units that share some characteristics of interest. Usually a 
population is defined in order to make an inference about it. For example a population could 
be all Simmental cattle in Croatia, but it could also be a set of steers at the age of one year 
fed on a particular diet. A population can be finite or infinite. An example of a finite 
population is a set of fattening steers on some farm in the year 2001. Such a population is 
defined as the number of steers on that farm, and the exact number and particular steers that 
belong to the population are known. On the contrary, an infinite population is a population 
for which the exact number of units is not known. This is for example the population of pigs 
in Croatia. The exact number of pigs is not known, if for nothing else because at any minute 
the population changes.  

In order to draw a conclusion about a specified population, measures of location and 
variability must be determined. The ideal situation would be that the frequency distribution 
is known, but very often that is impossible. An alternative is to use a mathematical model of 
frequency distribution. The mathematical model is described and defined by parameters. 
The parameters are constant values that establish the connection of random variables with 
their frequency. They are usually denoted with Greek letters. For example, µ is the mean, 
and σ2 is the variance of a population. Most often the true values of parameters are 
unknown, and they must be estimated from a sample. The sample is a set of observations 
drawn from a population. The way a sample is chosen will determine if it is a good 
representation of the population. Randomly drawn samples are usually considered most 
representative of a population. A sample of n units is a random sample if it is drawn in a 
way such that every set of n units has the same probability of being chosen. Numerical 
descriptions of a sample are called statistics. The arithmetic mean ( y ) and sample variance 
(s2) are examples of statistics. Statistics are functions of the random variable, and 
consequently they are random variables themselves. Generally, statistics are used in 
parameter estimation, but some statistics are used in making inferences about the 
population, although they themselves are not estimators of parameters. 

4.1 Functions of Random Variables and Sampling Distributions 

The frequency distribution of a sample can be presented by using graphs or tables. If a 
sample is large enough and representative, the frequency distribution of the sample is a 
good representation of the frequency distribution of the population. Although, the sample 
may not be large in most cases, it can still give enough information to make a good 
inference about the population. The sample can be used to calculate values of functions of 
the random variable (statistics), which can be used in drawing conclusions about the 
population. The statistics are themselves random variables, that is, their values vary from 
sample to sample, and as such they have characteristic theoretical distributions called 



54  Biostatistics for Animal Science 

 

sampling distributions. If the sampling distribution is known, it is easy to estimate the 
probability of the particular value of a statistic such as the arithmetic mean or sample 
variance. 

Inferences about a specified population can be made in two ways: by estimating 
parameters and by testing hypotheses. A conclusion based on a sample rests on probability. 
It is essential to use probability, because conclusions are based on just one part of a 
population (the sample) and consequently there is always some uncertainty that such 
conclusions based on a sample are true for the whole population.  
 
 
4.1.1 Central Limit Theorem 

One of the most important theorems in statistics describes the distribution of arithmetic 
means of samples. The theorem is as follows: if random samples of size n are drawn from 
some population with mean µ and variance σ2, and n is large enough, the distribution of 
sample means can be represented with a normal density function with mean  µy =µ  and 

standard deviation 
ny

σσ = . This standard deviation is often called the standard error of an 

estimator of the population mean, or shortly, the standard error. 

 
Figure 4.1  Distribution of sample means 

 
If the population standard deviation σ is unknown, then the standard error yσ  can be 
estimated by a standard error of the sample:  

n
ssy =  

 
 
4.1.2 Statistics with Distributions Other than Normal  

Some statistics, for example the arithmetic mean, have normal distributions. However, from 
a sample we can calculate values of some other statistics that will not be normally 
distributed, but those statistics can also be useful in making inferences. The distributions of 

µ
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those statistics are known if it is assumed that the sample is drawn from a normal 
population. For example the ratio: 

2

2

2

2 )()1(
σσ

∑ −
=

− i
yysn   

has a chi-square distribution with (n-1) degrees of freedom. Also, the statistic 

n
s

y
2

µ−  

follows the student t-distribution with (n-1) degrees of freedom. It will be shown later that 
some statistics have F distributions. 

4.2 Degrees of Freedom 

In the discussion about theoretical distributions the term degrees of freedom has been 
mentioned. Although the mathematical and geometrical explanation is beyond the scope of 
this book, a practical meaning will be described. Degrees of freedom are the number of 
independent observations connected with variance estimation, or more generally with the 
calculation of mean squares.  

In calculating the sample variance from a sample of n observations using the formula 

1
)( 2

2

−

−
= ∑

n
yy

s ii , the degrees of freedom are (n-1). To calculate the sample variance an 

estimate of the mean, the arithmetic average, must first be calculated. Thus only (n-1) 
observations used in calculating the variance are independent because there is a restriction 
concerning the arithmetic average, which is:  

0)( =−∑ yyii   

Only (n-1) of the observations are independent and the nth observation can be represented 
using the arithmetic average and the other observations: 

11 ...)1( −−−−−= nn yyyny  

Practically, the degrees of freedom are equal to the total number of observations minus the 
number of estimated parameters used in the calculation of the variance.  

Degrees of freedom are of importance when using statistics for estimation or making 
inference from samples. These procedures use the chi-square, t and F distributions. The 
shapes of these distributions affect the resulting estimates and inferences and the shape 
depends on the degrees of freedom. 
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Estimation of Parameters 

Inferences can be made about a population either by parameter estimation or by hypothesis 
testing. Parameter estimation includes point estimation and interval estimation. A rule or a 
formula that describes how to calculate a single estimate using observations from a sample 
is called a point estimator. The number calculated by that rule is called a point estimate. 
Interval estimation is a procedure that is used to calculate an interval that estimates a 
population parameter. 

5.1 Point Estimation 

A point estimator is a function of a random variable, and as such is itself a random variable 
and a statistic. This means that the values of a point estimator vary from sample to sample, 
and it has a distribution called a sampling distribution. For example, according to the central 
limit theorem, the distribution of sample means for large samples is approximately normal 
with a mean µ and standard deviation n/σ . Since the distribution is normal, all rules 
generally valid for a normal distribution apply here as well. The probability that the sample 
mean y  is less than µ is 0.50. Further, the probability that y  will not deviate from µ by 

more than n/96.1 σ  is 0.95. 

The distribution of an estimator is centralized about the parameter. If θ̂  denotes an 
estimator of a parameter θ  and it is true that θθ =)ˆ(E , then the estimator is unbiased. 
Another property of a good estimator is that its variance should be as small as possible. The 
best estimator is the estimator with the minimal variance, that is, a minimal dispersion about 
θ compared to all other estimators. Estimation of the variability of θ̂  about θ can be 
expressed with the mean square for θ̂ : 

( ) 



 −=

2
ˆ

ˆ θθ
θ

EMS  

There are many methods for finding a point estimator. Most often used are methods of 
moments and the maximum likelihood method. Here, the maximum likelihood method will 
be described.  
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5.2 Maximum Likelihood Estimation 

Consider a random variable y with a probability distribution p(y|θ), where θ denotes 
parameters. This function is thus the function of a variable y for given parameters θ. 
Assume now a function with the same algebraic form as the probability function, but 
defined as a function of the parameters θ  for a given set of values of the variable y. That 
function is called a likelihood function and is denoted with L(θ | y) or shortly L. Briefly, the 
difference between probability and likelihood is that a probability refers to the occurrence 
of future events, while a likelihood refers to past events with known outcomes. 
 
For example, the probability function for a binomial variable is:  

yny pp
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The likelihood function for given y1 positive responses out of n trials is: 
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The likelihood function can be used to estimate parameters for a given set of observations of 
some variable y. The desired value of an estimator will maximize the likelihood function. 
Such an estimate is called a maximum likelihood estimate and can be obtained by finding 
the solution of the first derivative of the likelihood function equated to zero. Often it is 
much easier to find the maximum of the log likelihood function, which has its maximum at 
the same value of the estimator as the likelihood function itself. This function is denoted 
with logL(θ |y) or shortly logL. For example, the log likelihood function for a y1 value of a 
binomial variable is: 
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Example: Consider 10 cows given some treatment and checked for responses. A positive 
response is noted in four cows. Assume a binomial distribution. 
 
The likelihood function for a binomial distribution is: 
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In this example n = 10 and y1 = 4. An estimate of the parameter p is sought which will 
maximize the log likelihood function. Taking the first derivative with respect to p: 

p
yn

p
y

p
logL

−
−

−=
∂

∂
1

 11  

To obtain the maximum likelihood estimator this expression is equated to zero: 
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The solution is: 

n
yp 1ˆ =  

For n = 10 and y1 = 4 the estimate is: 

4.0
10
4ˆ ==p  

Figure 5.1 presents the likelihood function for this example. The solution for p is at the 
point of the peak of the function L. 
 

 

Figure 5.1  Likelihood function of binomial variable 

 

5.3 Interval Estimation 

Recall that a point estimator is a random variable with some probability distribution. If that 
distribution is known, it is possible to determine an interval estimator for a given 
probability. For example, let θ̂  denote an estimator of some parameter θ. Assume that θ̂  
has a normal distribution with mean θθ =)ˆ(E  and standard error 

θ
σ ˆ . Define a standard 

normal variable: 

θ
σ
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ˆ −
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The probability is (1- α) that the values of the standard normal variable are in the interval 
± zα/2 (Figure 5.2): 

P(-zα/2 ≤ z ≤ zα/2) = 1 - α  
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Figure 5.2  Interval of the standard normal variable defined with (1-α) probability 

 

Replacing z with 
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The expression )ˆˆ( ˆ2/ˆ2/ θαθα σθθσθ zz +≤≤−  is called an interval estimator. Generally, the 
interval estimator is: 

( )ErrorθErrorθ +≤≤− ˆˆ θ  

The error describes interval limits and depends on the probability distribution of the 
estimator. However, when the value for θ̂  is calculated from a given sample, the calculated 
interval does not include the probability of the random variable since the parameter θ is 
unknown and the exact position of the value for θ̂  in the distribution is unknown. This 
interval based on a single value of the random variable is called a confidence interval. A 
confidence interval includes a range of values about a parameter estimate from a sample 
such that the probability that the true value of the parameter θ  lies within the interval is 
equal to 1-α. This probability is known as the confidence level. The upper and lower limits 
of the interval are known as confidence limits. A confidence interval at confidence level 1-α 
contains the true value of the parameter θ with probability 1-α, regardless of the calculated 
value for θ̂ . A confidence interval is interpreted as follows: if a large number of samples of 
size n are drawn from a population and for each sample a 0.95 (or 95%) confidence interval 
is calculated, then 95% of these intervals are expected to contain the true parameter θ. For 
example, if a 95% confidence interval for cow height based on the arithmetic mean and 
sample variance is 130 to 140 cm, we can say there is 95% confidence that the mean cow 
height for the population is between 130 and 140 cm.  

 0
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Thus, if an estimator has a normal distribution, the confidence interval is: 

θα σθ ˆ2/
ˆ z±  

Here, θ̂  is the point estimate of the parameter θ calculated from a given sample. If the 
estimator has normal or student distribution, then the general expression for the confidence 
interval is: 
 
(Estimate) ± (standard error) (value of standard normal or student variable for α/2) 
 
The calculation of a confidence interval can be accomplished in four steps: 
1) determine the point estimator and corresponding statistic with a known distribution, 
2) choose a confidence level (1-α), 
3) calculate the estimate and standard error from the sample, 
4) calculate interval limits using the limit values for α, the estimate and its standard error. 
 

5.4 Estimation of Parameters of a Normal Population 

5.4.1 Maximum Likelihood Estimation 

Recall the normal density function for a normal variable y is: 
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The likelihood function of n values of a normal variable y is: 
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The log likelihood function for n values of a normal variable is:  
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The maximum likelihood estimators are obtained by taking the first derivative of the log 
likelihood function with respect to σ2 and µ: 
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By setting both terms to zero the estimators are: 
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The expectation of y  is µ=)( yE , thus, y  is an unbiased estimator: 
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However, the estimator of the variance is not unbiased. An unbiased estimator is obtained 
when the maximum likelihood estimator is multiplied by n / (n-1):  
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A variance estimator can be also obtained by using restricted maximum likelihood 
estimation (REML). The REML estimator is a maximum likelihood estimator adjusted for 
the degrees of freedom: 
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5.4.2 Interval Estimation of the Mean 

A point estimator of a population mean µ is the sample arithmetic mean y . The expectation 
of y  is µ=)( yE , thus, y  is an unbiased estimator. Also, it can be shown that y  has the 
minimum variance of all possible estimators.  
 
Recall that according to the central limit theorem, y  has a normal distribution with mean µ 

and standard deviation 
ny

σσ = . 

The statistic
y

yz
σ

µ−
=  is a standard normal variable. The interval estimator of the 

parameter µ is such that:  

ασµσ αα −=+≤≤− 1)( 2/2/ yy zyzyP   

where -zα/2 and zα/2 are the values of the standard normal variable for α/2 of the area under 
the standard normal curve at the tails of the distribution (Figure 5.2). Note, that y  is a 
random variable; however the interval does not include probability of a random variable 
since the population mean is unknown. The probability is 1-α that the interval includes the 
true population mean µ. The confidence interval around the estimate y  is: 

yzy σα  ± /2  
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If the population standard deviation (σ) is unknown, it can be replaced with the estimate 
from the sample. Then, the standard error is: 

n
ssy =  

and the confidence interval is: 

yszy  ± /2α   

 
 
Example: Milk yields for one lactation for 50 cows sampled from a population have an 
arithmetic mean of 4000 kg and a sample standard deviation of 800 kg. Estimate the 
population mean with a 95% confidence interval. 

4000=y  kg 
s = 800 kg 
n = 50 cows 

 
For 95% confidence interval α = 0.05, because (1 - α) 100% = 95%. The value 
zα/2 = z0.025 = 1.96.  

14.113
50

800
===

n
ssy  

The confidence interval is: 

yszy  ± /2α  
4000 ± (1.96)(113.14) = 4000 ± 221.75 

It can be stated with 95% confidence that the population mean µ is between 3778.2 and 
4221.7 kg.  
 
 
The central limit theorem is applicable only for large samples. For a small sample the 
distribution of y  may not be approximately normal. However, assuming that the population 
from which the sample is drawn is normal, the t distribution can be used. A confidence 
interval is: 

ysty  ± /2α  

The value ta/2 can be found in the table Critical Values of the Student t distribution in 
Appendix B. Using (n-1) degrees of freedom, the procedure of estimation is the same as 
when using a z value.  
 
 
5.4.3 Interval Estimation of the Variance 

It can be shown that an unbiased estimator of the population variance σ2 is equal to the 
sample variance: 
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since E(s2) = σ2. 
The sample variance has neither a normal nor a t distribution. If the sample is drawn 

from a normal population with mean µ and variance σ2, then  
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is a random variable with a chi-square distribution with (n-1) degrees of freedom. The 
interval estimator of the population variance is based on a chi-square distribution. With 
probability (1-α) : 

P(χ2
1-α/2 ≤ χ2 ≤ χ2

α/2) = 1 - α  

that is 
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where χ2
1-α/2 and χ2

α/2 are the values of the χ2 variable that correspond to an area of α/2 at 
each tail of the chi-square distribution (Figure 5.3). 
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Figure 5.3  Interval of the χ2 variable defined with (1-α) probability 

 
Using numerical operations and the calculated sample variance from the expression above, 
the (1-α)100% confidence interval is: 
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where s2 is the sample variance. 
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Exercises  

5.1. Using the sample from exercise 1.1, calculate the confidence interval for the 
population. 
 
5.2. Using the sample from exercise 1.3, calculate the confidence interval for the 
population. 
 
5.3. Using the sample from exercise 1.4, calculate the confidence interval for the 
population. 
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Chapter 6  
 
Hypothesis Testing 

The foundation of experimental research involves testing of hypotheses. There are two 
types of hypotheses: research and statistical hypotheses. The research hypothesis is 
postulated by the researcher on the basis of previous investigations, literature, or 
experience. For example, from experience and previous study a researcher might 
hypothesize that in a certain region a new type of housing will be better than a traditional 
one. The statistical hypothesis, which usually follows the research hypothesis, formally 
describes the statistical alternatives that can result from the experimental evaluation of the 
research hypothesis. 

There are two statistical hypotheses: the null hypothesis (H0) and the alternative 
hypothesis (H1). The null hypothesis is usually an assumption of unchanged state. For 
example, the H0 states that there is no difference between some characteristics, for example 
means or variances of two populations. The alternative hypothesis, H1, describes a changed 
state or existence of a difference. The research hypothesis can be postulated as two 
possibilities: there is a difference or there is no difference. Usually the statistical alternative 
hypothesis H1 is identical to the research hypothesis, thus the null hypothesis is opposite to 
what a researcher expects. It is generally easier to prove a hypothesis false than that is true, 
thus a researcher usually attempts to reject H0.  

A statistical test based on a sample leads to one of two conclusions: 1) a decision to 
reject H0 (because it is found to be false), or 2) a decision not to reject H0, because there is 
insufficient proof for rejection. The null and alternative hypothesis, H0 and H1, always 
exclude each other. Thus, when H0 is rejected H1 is assumed to be true. On the other hand, it 
is difficult to prove that H0 is true. Rather than accepting H0, it is not rejected since there is 
not enough proof to conclude that H0 is false. It could be that a larger amount of information 
would lead to rejecting H0.  

For example, a researcher suspects that ration A will give greater daily gains than 
ration B. The null hypothesis is defined that the two rations are equal, or will give the same 
daily gains. The alternative hypothesis is that rations A and B are not equal or that ration A 
will give larger daily gains. The alternative hypothesis is a research hypothesis. The 
researcher seeks to determine if ration A is better than B. An experiment is conducted and if 
the difference between sample means is large enough, he can conclude that generally the 
rations are different. If the difference between the sample means is small, he will fail to 
reject the null hypothesis. Failure to reject the null hypothesis does not show the rations to 
be the same. If a larger number of animals had been fed the two rations a difference might 
have been shown to exist, but the difference was not revealed in this experiment.  

The rules of probability and characteristics of known theoretical distributions are used 
to test hypotheses. Probability is utilized to reject or fail to reject a hypothesis, because a 
sample is measured and not the whole population, and there cannot be 100% confidence 
that the conclusion from an experiment is the correct one.  
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6.1 Hypothesis Test of a Population Mean 

One use of a hypothesis test is to determine if a sample mean is significantly different from 
a predetermined value. This example of hypothesis testing will be used to show the general 
principles of statistical hypotheses.  

First, a researcher must define null and alternative hypotheses. To determine if a 
population mean is different from some value µ0, the null and alternative hypotheses are: 

H0: µ = µ0  
H1: µ ≠ µ0  

 
The null hypothesis, H0, states that the population mean is equal to µ0, the alternative 
hypothesis, H1, states that the population mean is different from µ0. 

The next step is to define an estimator of the population mean. This is the sample mean 
y . Now, a test statistic with a known theoretical distribution is defined. For large samples 

the sample mean has a normal distribution, so a standard normal variable is defined: 

y

yz
σ

µ0−
=   

where 
ny

σσ =  is the standard error. This z statistic has a standard normal distribution if 

the population mean is µ = µ0, that is, if H0 is correct (Figure 6.1). Recall that generally the 
z statistic is of the form: 

estimator the oferror  Standard
ParameterEstimatorz −

=  

 

µ0

0 zα/2 -zα/2 

y

z  

Figure 6.1  Distribution of y . Lower scale is the standard scale 
y

yz
σ

µ0−
=  

Recall if the population variance is unknown that the standard error yσ  can be estimated by 

a sample standard error nssy /= , and then: 
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From the sample the estimate (the arithmetic mean) is calculated. Next to be calculated is 
the value of the proposed test statistic for the sample. The question is, where is the position 
of the calculated value of the test statistic in the theoretical distribution? If the calculated 
value is unusually extreme, the calculated y  is considerably distant from the µ0, and there 
is doubt that y  fits in the hypothetical population. If the calculated y  does not fit in the 
hypothetical population the null hypothesis is rejected indicating that the sample belongs to 
a population with a mean different from µ0. Therefore, it must be determined if the 
calculated value of the test statistic is sufficiently extreme to reject H0. Here, sufficiently 
extreme implies that the calculated z is significantly different from zero in either a positive 
or negative direction, and consequently the calculated y  is significantly smaller or greater 
than the hypothetical µ0.  

Most researchers initially determine a rule of decision against H0. The rule is as 
follows: choose a probability α and determine the critical values of zα/2 and –zα/2 for the 
standard normal distribution if H0 is correct. The critical values are the values of the z 
variable such that the probability of obtaining those or more extreme values is equal to α, 
P(z > zα/2 or z < zα/2) = α, if H0 is correct. The critical regions include the values of z that are 
greater than zα/2, or less than –zα/2, (z > zα/2 or z < –zα/2). The probability α is called the level 
of significance (Figure 6.2). Usually, α = 0.05 or 0.01 is used, sometimes 0.10.  
 

zα/2 -zα/2 

 α/2  α/2 

Level of significance = α 

critical 
 region 

critical 
 region 

0
critical 
 value 

 
Figure 6.2  Illustration of significance level, critical value and critical region 

 
The value of the test statistic calculated from the sample is compared with the critical value. 
If the calculated value of z is more extreme than one or the other of the critical values, thus 
is positioned in a critical region, H0 is rejected. When H0 is rejected the value for which z 
was calculated does not belong to the distribution assumed given H0 was correct (Figure 
6.3). The probability that the conclusion to reject H0 is incorrect and the calculated value 
belongs to the distribution of H0 is less than α. If the calculated value z is not more extreme 
than zα/2 or –zα/2, H0 cannot be rejected (Figure 6.4). 
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zα/2 -zα/2 0 z 
 

Figure 6.3  The calculated z is in the critical region and H0 is rejected with an α level of 
significance. The probability that the calculated z belongs to the H0 population is less than 
α 

zα/2 -zα/2 0 z 
 

Figure 6.4  The calculated z is not in the critical region and H0 is not rejected with α level 
of significance. The probability that calculated z belongs to H0 population is greater than α 

 
Any hypothesis test can be performed by following these steps: 

1) Define H0 and H1  
2) Determine α  
3) Calculate an estimate of the parameter  
4) Determine a test statistic and its distribution when H0 is correct and calculate its 

value from a sample 
5) Determine the critical value and critical region 
6) Compare the calculated value of the test statistic with the critical values and make a 

conclusion 
 
 
Example: Given a sample of 50 cows with an arithmetic mean for lactation milk yield of 
4000 kg, does this herd belong to a population with a mean µ0 = 3600 kg and a standard 
deviation σ = 1000 kg? 
 
The hypothetical population mean is µ0 = 3600 and the hypotheses are: 

H0: µ = 3600  
H1: µ ≠ 3600  
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Known values are: 

4000=y  kg 
σ = 1000 kg 
n = 50 cows 

 
The calculated value of the standard normal variable is:  

828.2
501000

36004000
=

−
=z  

A significance level of α = 0.05 is chosen. The critical value corresponding to  α = 0.05 is 
zα/2 = 1.96. The calculated z is 2.828. The sample mean (4000 kg) is 2.828 standard errors 
distant from the hypothetical population mean (3600 kg) if H0 is correct. The question is if 
the calculated z = 2.828 is extreme enough that the sample does belong to the population 
with a mean 3600 kg. The calculated |z| > zα/2, numerically, |2.828| > 1.96, which means that 
the calculated z is in the critical region for rejection of H0 with α = 0.05 level of significance 
(Figure 6.5). The probability is less than 0.05 that the sample belongs to the population with 
the mean of 3600 kg and standard deviation of 1000.  
 

 

z 
4000

-1.96 1.96  2.83
3600

0 

y

 
Figure 6.5  A distribution of sample means of milk yield with the mean µ = 3600 and the 
standard deviation σ = 1000. The lower line presents the standard normal scale 

 
 
6.1.1 P value 

Another way to conclude whether or not to reject H0 is to determine the probability that the 
calculated value of a test statistic belongs to the distribution when H0 is correct. This 
probability is denoted as the P value. The P value is the observed level of significance. 
Many computer software packages give P values and leave to the researcher the decision 
about rejecting H0. The researcher can reject H0 with a probability equal to the P value of 
being in error. The P value can also be used when a significance level is determined 
beforehand. For a given level of significance α, if a P value is less than α, H0 is rejected 
with the α level of significance. 
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6.1.2 A Hypothesis Test Can Be One- or Two-sided 

In the discussion about testing hypotheses given above, the question was whether the 
sample mean y  was different than some value µ0. That is a two-sided test. That test has two 
critical values, and H0 is rejected if the calculated value of the test statistic is more extreme 
than either of the two critical values. A test can also be one-sided. In a one-sided test there 
is only one critical value and the rule is to reject H0 if the calculated value of the test 
statistic is more extreme than that critical value.  
If the question is to determine if µ > µ0 then:  

H0: µ ≤ µ0 
H1: µ > µ0  

 
For testing these hypotheses the critical value and the critical region are defined in the right 
tail of the distribution (Figure 6.6).  

 

zα 

 α

 
Figure 6.6  The critical value and critical region for z > zα 

 
The critical value is zα. The critical region consists of all z values greater than zα. Thus, the 
probability that the random variable z has values in the interval (zα, ∞) is equal to α, 
P(z > zα) = α. If the calculated z is in the critical region, or greater than zα, H0 is rejected 
with α level of significance. 
 
Alternatively, the question can be to determine if µ < µ0 then: 

H0: µ ≥ µ0  
H1: µ < µ0  

 
For testing these hypotheses the critical value and the critical region are defined in the left 
tail of the distribution (Figure 6.7).  
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-zα 

 α

 
Figure 6.7  The critical value and critical region for z < -zα 

 
The critical value is –zα. The critical region consists of all z values less than –zα. Thus, the 
probability that the random variable z has values in the interval (–∞, –zα) is equal to α, 
P(z < –zα) = α. If the calculated z is in the critical region or is less than zα, H0 is rejected with 
α level of significance. 
 
 
6.1.3 Hypothesis Test of a Population Mean for a Small Sample 

The student t-distribution is used for testing hypotheses about the population mean for a 
small sample (say n < 30) drawn from a normal population. The test statistic is a t random 
variable: 

ns
yt 0µ−=  

The approach to reaching a conclusion is similar to that for a large sample. The calculated 
value of the t statistic is tested to determine if it is more extreme than the critical value tα or 
tα/2 with α level of significance. For a two-sided test the null hypothesis H0: µ = µ0 is 
rejected if |t| > tα/2, where tα/2 is a critical value such that P(t > tα/2) = α/2. For a one-sided 
test the null hypothesis H0: µ ≤ µ0 is rejected if t > tα or H0: µ ≥ µ0 is rejected if t < –tα, 
depending on whether it is a right- or left-sided test. Critical values can be found in the table 
Critical Values of the Student t-distribution in Appendix B. The shape of the distribution 
and the value of the critical point depend on degrees of freedom. The degrees of freedom 
are (n – 1), where n is the number of observations in a sample. 
 
 
Example: The data are lactation milk yields of 10 cows. Is the arithmetic mean of the 
sample, 3800 kg, significantly different from 4000 kg? The sample standard deviation is 
500 kg.  
 
The hypothetical mean is µ0 = 4000 kg and the hypotheses are as follows: 

H0: µ = 4000 kg 
H1: µ ≠ 4000 kg 
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The sample mean is 3800=y  kg. 
The sample standard deviation is s = 500 kg. 
The standard error is:  

10500=ns  

The calculated value of the t-statistic is: 

26.1
10500

400038000 −=
−

=
−

=
ns

yt µ  

For α = 0.05 and degrees of freedom (n – 1) = 9, the critical value is –tα/2 = –2.262. Since 
the calculated t = –1.26 is not more extreme than the critical value –tα/2 = –2.262, H0 is not 
rejected with an α = 0.05 level of significance. The sample mean is not significantly 
different from 4000 kg.  

6.2 Hypothesis Test of the Difference between Two Population Means 

Assume that samples are drawn from two populations with means µ1 and µ2. The samples 
can be used to test if the two means are different. The z or t statistic will be used depending 
on the sample size. The form of the test also depends on whether the two samples are 
dependent or independent of each other, and whether the variances are equal or unequal. 
Further, the hypotheses can be stated as one- or two-sided. The hypotheses for the two-
sided test are: 

H0: µ1 – µ2 = 0 
H1: µ1 – µ2 ≠ 0 

 
The null hypothesis H0 states that the population means are equal, and the alternative 
hypothesis H1 states that they are different.  
 
 
6.2.1 Large Samples 

Let 1y  and 2y  denote arithmetic means and let n1 and n2 denote numbers of observations of 
samples drawn from two corresponding populations. The problem is to determine if there is 
a difference between the two populations. If the arithmetic means of those two samples are 
significantly different, it implies that the population means are different. The difference 
between the sample means is an estimator of the difference between the means of the 
populations. The z statistic is defined as: 
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1

2
1

)( 21 nnyy
σσσ +=−  is the standard error of difference between the two means and 

σ2
1 and σ2

2 are the variances of the two populations. If the variances are unknown, they can 
be estimated from the samples and the standard error is: 
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where s2
1 and s2

2 are estimates of the variances of the samples.  
 
Then the z statistic is: 
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For a two-sided test H0 is rejected if the calculated value |z| > zα/2, where zα/2 is the critical 
value for the significance level α. In order to reject H0, the calculated value of the test 
statistic z must be more extreme than the critical value zα/2. 
 
 
Example: Two groups of 40 cows were fed two different rations (A and B) to determine 
which of those two rations will yield more milk in lactation. At the end of the experiment 
the following sample means and variances (in thousand kg) were calculated:  
 

 Ration A Ration B 
Mean ( y ) 5.20 6.50 
Variance (s2) 0.25 0.36 
Size (n) 40 40 

 
The hypotheses for a two-sided test are: 

H0: µ1 – µ2 = 0 
H1: µ1 – µ2 ≠ 0 

 
The standard error of difference is: 
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The calculated value of z statistic is: 

569.10
123.0
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Since the calculated value z = –10.569 is more extreme than the critical value 
-zα/2 = -z0.025 = –1.96, the null hypothesis is rejected with α = 0.05 level of significance, 
suggesting that feeding cows ration B will result in greater milk yield than feeding ration A.  
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6.2.2 Small Samples and Equal Variances 

For comparisons involving small samples a t statistic is used. The definition of the t statistic 
depends on whether variances are equal or unequal. The test statistic for small samples with 
equal variance is: 
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where 1y  and 2y  are the sample means, n1 and n2 are sample sizes, and s2
p is the pooled 

variance:  
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Here i = 1 to n1, j = 1 to n2. Since the variances are assumed to be equal, the estimate of the 
pooled variance s2

p is calculated from the observations from both samples.  
When the number of observations is equal in two samples, that is n1 = n2 = n, the 

expression for the t statistic simplifies to: 
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The H0 is rejected if the calculated value |t| > tα/2, where tα/2 is the critical value of t with 
significance level α.  
 
 
Example: Consider the same experiment as in the previous example with large samples, 
except that only 20 cows were fed each ration. From the first group two cows were culled 
because of illness. Thus, groups of 18 and 20 cows were fed two rations A and B, 
respectively. Again, the question is to determine which ration results in more milk in a 
lactation. The sample means and variances (in thousand kg) at the end of the experiment 
were: 
 

 Ration A Ration B 
Mean ( y ) 5.50 6.80 

Σiyi = 99 136 

Σiy2
i = 548 932 

Variance (s2) 0.206 0.379 
Size (n) 18 20 
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The estimated pooled variance is: 
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The estimated variance can also be calculated from: 

=
−+

−+−
=

2
)1()1(

21

2
22

2
112

nn
snsnsp 297.0

22018
)379.0)(120()206.0)(118(

=
−+

−+−  

The calculated value of the t statistic is: 
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The critical value is –tα/2 = –t0.025 = –2.03. Since the calculated value of t = –7.342 is more 
extreme than the critical value –t0.025 = –2.03, the null hypothesis is rejected with 0.05 level 
of significance, which implies that feeding cows ration B will cause them to give more milk 
than feeding ration A.  
 
 
6.2.3 Small Samples and Unequal Variances 

A statistic for testing the difference between two population means with unequal variances 
is also a t statistic: 
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For unequal variances degrees of freedom, denoted v, are no longer equal to (n1 + n2 – 2) 
but are: 
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6.2.4 Dependent Samples 

Under some circumstances two samples are not independent of each other. A typical 
example is taking measurements on the same animal before and after applying a treatment. 
The effect of the treatment can be thought of as the average difference between the two 
measurements. The value of the second measurement is related to or depends on the value 
of the first measurement. In that case the difference between measurements before and after 
the treatment for each animal is calculated and the mean of those differences is tested to 
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determine if it is significantly different from zero. Let di denote the difference for an animal 
i. The test statistic for dependent samples is: 

ns
dt
d

0−
=   

where d  and ds  are the mean and standard deviation of the differences, and n is the 
number of animals. The testing procedure and definition of critical values is as before, 
except that degrees of freedom are (n – 1). For this test to be valid the distribution of 
observations must be approximately normal. 
 
 
Example: The effect of a treatment is tested on milk production of dairy cows. The cows 
were in the same parity and stage of lactation. The milk yields were measured before and 
after administration of the treatment: 
 
Measurement Cow 1 Cow 2 Cow 3 Cow 4 Cow 5 Cow 6 Cow 7 Cow 8 Cow 9 

1 27 45 38 20 22 50 40 33 18 
2 31 54 43 28 21 49 41 34 20 

Difference (d) 4 9 5 8 –1 –1 1 1 2 
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The critical value for (n – 1) = 8 degrees of freedom is t0.05 = 2.306. Since the calculated 
value t = 2.553 is more extreme than the critical value 2.306, the null hypothesis is rejected 
with α = 0.05 level of significance. The treatment thus influences milk yield.  
 
 
Pairing measurements before and after treatment results in removal of variation due to 
differences among animals. When this design can be appropriately used there is greater 
power of test or an increased likelihood of finding a treatment effect to be significant when 
compared to a design involving two separate samples of animals.  
 
 
6.2.5 Nonparametric Test 

When samples are drawn from populations with unknown sampling distributions, it is not 
appropriate to use the previously shown z or t tests. Indications of such distributions are 
when the mode is near an end of the range or when some observations are more extreme 
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than one would expect. Nonparametric tests are appropriate for such samples because no 
particular theoretical distribution is assumed to exist. Many nonparametric tests compare 
populations according to some central point such as the median or mode. Rank 
transformations are also utilized. The use of ranks diminishes the importance of the 
distribution and the influence of extreme values in samples. One such test is the simple rank 
test. The null hypothesis is that no effect of groups exists. It is assumed that the distributions 
of the groups are equal, but not necessarily known. This test uses an estimator of the ranks 
of observations. The estimator of ranks in a group is: 

T = the sum of ranks in a group 

The simple test involves determining if the sum of ranks in one group is significantly 
different from the expected sum of ranks calculated on the basis of ranks of observations for 
both groups. The expected sum of ranks for a group if the groups are not different is: 

E(T) = n1 R  

where n1 is the number of observations in group 1, and R  is the mean rank using both 
groups together. The standard deviation in the combined groups is: 

( )21

21)(
nn

nnsTSD R +
=  

where SR is the standard deviation of the ranks using both groups together, and n1 and n2 are 
the numbers of observations in groups 1 and 2, respectively. If the standard deviations of 
ranks are approximately equal for both groups, then the distribution of T can be 
approximated by a standard normal distribution. The statistic: 

( )
)(TSD
TETz −

=  

has a standard normal distribution. A practical rule is that the sample size must be greater 
than 5 and the number of values that are the same must be distributed equally to both 
groups. The rank of observations is determined in the following manner: 

The observations of the combined groups are sorted in ascending order and ranks are 
assigned to them. If some observations have the same value, then the mean of their ranks is 
assigned to them. For example, if the 10th and 11th observations have the same value, say 20, 
their ranks are (10 + 11)/2 = 10.5.  
 
 
Example: Groups of sows were injected with gonadotropin or saline. The aim of the 
experiment was to determine if the gonadotropin would result in higher ovulation rate. The 
following ovulation rates were measured:  
 

Gonadotropin 14 14 7 45 18 36 15 
Saline 12 11 12 12 14 13 9 
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The observations were sorted regardless of the treatment: 
 

Treatment Ovulation rate Rank 
Gonadotropin 7 1 
Saline 9 2 
Saline 11 3 
Saline 12 5 
Saline 12 5 
Saline 12 5 
Saline 13 7 
Gonadotropin 14 9 
Gonadotropin 14 9 
Saline 14 9 
Gonadotropin 15 11 
Gonadotropin 18 12 
Gonadotropin 36 13 
Gonadotropin 45 14 
 R  7.5 
 sR 4.146 

 
n1 = 7 
n2 = 7 
T = 2 + 3 + 5 + 5 + 5 + 7 + 9 = 36 

 
E(T) = n1 R = (7)(7.5) = 52.5 
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Since the calculated value of z = –2.127 is more extreme than the critical value, –1.96, the 
null hypothesis is rejected with α = 0.05 significance level. It can be concluded that 
gonadotropin treatment increased ovulation rate. Note that the extreme values, 7, 36 and 45, 
did not have undue influence on the test.  
 
Again test the difference between treatment for the same example, but now using a t test 
with unequal variances. The following values have been calculated from the samples: 
 

 Gonadotropin Saline 
Mean ( y ) 21.286 11.857 
Variance (s2) 189.905 2.476 
Size (n) 7 7 

 
The calculated value of the t-statistic is: 
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Here, the degrees of freedom are v = 6.16 (because of the unequal variance) and the critical 
value of the t distribution is –2.365. Since the calculated value t = –1.799, is not more 
extreme than the critical value (-2.365) the null hypothesis is not rejected. Here, the extreme 
observations, 7, 36 and 45, have influenced the variance estimation, and consequently the 
test of difference.  
 
 
6.2.6 SAS Examples for Hypotheses Tests of Two Population Means 

The SAS program for the evaluation of superovulation of sows is as follows.  
 
SAS program: 
 

DATA superov; 
INPUT trmt $ OR @@; 
DATALINES; 
G 14  G 14  G  7  G 45  G 18  G 36  G 15 
S 12  S 11  S 12  S 12  S 14  S 13  S  9 
; 
PROC TTEST DATA=superov; 
CLASS trmt; 
VAR OR; 
RUN; 

 
Explanation: The TTEST procedure is used. The file with observations must have a 
categorical variable that determines allocation of each observation to a group (trmt). The 
CLASS statement defines which variable determines trmt. The VAR statement defines the 
variable that is to be analyzed. 
 
SAS output: 
                              Statistics 
                   Lower CL         Upper CL  Lower CL           Upper CL 
Variable  trmt  N   Mean    Mean   Mean   Std Dev  Std Dev   Std Dev  Std Err 
OR        G     7  8.5408  21.286  34.031  8.8801   13.781   30.346   5.2086 
OR        S     7 10.402   11.857  13.312  1.014     1.5736   3.4652  0.5948 
OR     Diff (1-2) -1.994    9.428  20.851  7.0329    9.8077  16.19    5.2424 
 

                               T-Tests 
Variable    Method        Variances    DF    t Value    Pr > |t| 
 

OR          Pooled          Equal      12      1.80      0.0973 
OR        Satterthwaite    Unequal      6.16   1.80      0.1209 
 

                  Equality of Variances 
Variable    Method      Num DF    Den DF    F Value    Pr > F 
OR          Folded F         6         6      76.69    <.0001 
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Explanation: The program gives descriptive statistics and confidence limits for both 
treatments and their difference. N, Lower CL Mean, Mean, Upper CL, Mean, Lower CL Std 
Dev, Std Dev, Upper CL Std Dev and Std Err are sample size, lower confidence limit, mean, 
upper confidence limit, standard deviation of lower confidence limit, standard deviation of 
values, standard deviation of upper confidence limit and standard error of the mean, 
respectively. The program calculates t tests, for Unequal and Equal variances, together with 
corresponding degrees of freedom and P values (Prob>|T|). The t test is valid if 
observations are drawn from a normal distribution. Since in the test for equality of 
variances, F = 76.69 is greater than the critical value and the P value is <0.0001, the 
variances are different and it is appropriate to apply the t test for unequal variances. The P 
value is 0.1209 and thus H0 cannot be rejected.  
 
This alternative program uses the Wilcoxon test (the simple rank test) : 
 
DATA superov; 
INPUT trmt $ OR @@; 
DATALINES; 
G 14  G 14  G  7  G 45  G 18  G 36  G 15 
S 12  S 11  S 12  S 12  S 14  S 13  S  9 
; 
PROC NPAR1WAY DATA=superov 
  WILCOXON; 
 CLASS trmt; 
 EXACT WILCOXON; 
 VAR OR; 
RUN; 

 
 
Explanation: The program uses the NPAR1WAY procedure with the WILCOXON option 
for a Wilcoxon or simple rank test. The CLASS statement defines the variable that classifies 
observations to a particular treatment. The VAR statement defines the variable with 
observations. 
 
SAS output: 
 

Wilcoxon Scores (Rank Sums) for Variable OR 
Classified by Variable trmt 

 

             Sum of         Expected       Std Dev      Mean  
trmt     N   Scores      Under H0      Under H0         Score 
------------------------------------------------------------- 
G        7     69.0         52.50      7.757131      9.857143 
S        7     36.0         52.50      7.757131      5.142857 
 

       Average scores were used for ties. 
 

       Wilcoxon Two-Sample Test 
 

    Statistic (S)               69.0000 
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     Normal Approximation 
     Z                            2.0626 
     One-Sided Pr >  Z            0.0196 
     Two-Sided Pr > |Z|           0.0391 
 
     t Approximation 
     One-Sided Pr >  Z            0.0299 
     Two-Sided Pr > |Z|           0.0597 
 
     Exact Test 
     One-Sided Pr >=  S           0.0192 
     Two-Sided Pr >= |S - Mean|   0.0385 
 
     Z includes a continuity correction of 0.5. 
 
   Kruskal-Wallis Test 
   Chi-Square         4.5244 
   DF                      1 
   Pr > Chi-Square    0.0334 

 
Explanation: The sum of ranks (Sum of scores) = 69.0. The expected sum of ranks 
(Expected Under H0) = 52.5. The P values for One-Sided and Two-Sided Exact Tests are 
0.0192 and 0.0385, respectively. This suggests that H0 should be rejected and that there is 
an effect of the superovulation treatments. Also, the output presents a z value with the 
correction (0.5) for a small sample. Again, it is appropriate to conclude that the populations 
are different since the P value for the two-sided test (Prob > |z|) = 0.0391. The same 
conclusion can be obtained from Kruskal-Wallis Test which uses chi-square distribution. 

6.3 Hypothesis Test of a Population Proportion 

Recall that a proportion is the probability of a successful trial in a binomial experiment. For 
a sample of size n and a number of successes y, the proportion is equal to: 

n
yp =   

Thus, the test of a proportion can utilize a binomial distribution for sample size n; however, 
for a large sample a normal approximation can be used. The distribution of an estimated 
proportion from a sample, p̂ , is approximately normal if the sample is large enough. A 

sample is assumed to be large enough if the interval nqpp /ˆˆˆ ±  holds neither 0 nor 1. 
Here, n is the sample size and pq ˆ1ˆ −= .  

The hypothesis test indicates whether the proportion calculated from a sample is 
significantly different from a hypothetical value. In other words, does the sample belong to 
a population with a predetermined proportion. The test can be one- or two-sided. The two-
sided test for a large sample has the following hypotheses: 
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H0: p = p0  
H1: p ≠ p0  

 
A z random variable is used as a test statistic:  

nqp
ppz
00

0ˆ −
=  

 
 
Example: There is a suspicion that due to ecological pollution in a region, the sex ratio in a 
population of field mice is not 1:1, but there are more males. An experiment was conducted 
to catch a sample of 200 mice and determine their sex. There were 90 females and 110 
males captured.  
The hypotheses are: 

H0: p = 0.50 
H1: p > 0.50  

 
Let y = 110 be the number of males, n = 200 the total number of captured mice, 
p̂  = 110/200 = 0.55 the proportion of captured mice that were males, and q̂  = 0.45 the 

proportion of captured mice that were females. The hypothetical proportion that are males is 
p0 = 0.5, and the hypothetical proportion that are females is q0 = 0.5. 
The calculated value of the test statistic is: 
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For a significance level of α = 0.05, the critical value is zα = 1.65. Since the calculated value 
z = 1.41 is not more extreme than 1.65, we cannot conclude that the sex ratio is different 
than 1:1. 
 
The z value can also be calculated using the number of individuals: 
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The z value is the same. Here µ0 is the expected number of males if H0 holds. 

6.4 Hypothesis Test of the Difference between Proportions from Two 
Populations 

Let y1 and y2 be the number of successes in two binomial experiments with sample sizes n1 
and n2, respectively. For the estimation of p1 – p2, where p1 and p2 are the proportions of 
successes in two populations, proportions 1p̂  and 2p̂  from two samples can be used: 

2

2
2

1

1
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n
yp

n
yp ==  

The problem is to determine if the proportions from the two populations are different. An 
estimator of the difference between proportions is:  
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where q1 = (1 – p1) and q2 = (1 – p2). The hypotheses for a two-sided test are: 

H0: p1 – p2 = 0 
H1: p1 – p2 ≠ 0 

The test statistic is the standard normal variable: 
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where 
21 ˆˆ pps −  is the standard error of the estimated difference between proportions 

( 21 ˆˆ pp − ). Since the null hypothesis is that the proportions are equal, then: 
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where pq ˆ1ˆ −=  
 
The proportion p̂  is an estimator of the total proportion based on both samples: 
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From the given sample proportions, the estimate of the total proportion can be calculated: 
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The normal approximation and use of a z statistic is appropriate if the intervals 
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The null hypothesis H0 is rejected if the calculated |z| > zα/2, where zα/2 is a critical value 
for the significance level α. 
 
 
Example: Test the difference between proportions of cows that returned to estrus after first 
breeding on two farms. Data are in the following table: 
 

Farm 1 Farm 2 
y1 = 40  y2 = 30 
n1 = 100 n2 = 100 
p1 = 0.4 p2 = 0.3 

 
Here y1 and y2 are the number of cows that returned to estrus, and n1 and n2 are the total 
numbers of cows on farms 1 and 2, respectively. 
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For the level of significance α = 0.05, the critical value is 1.96. Since 1.48 is less than 1.96, 
there is not sufficient evidence to conclude that the proportion of cows that returned to 
estrus differs between the two farms.  

6.5 Chi-square Test of the Difference between Observed and Expected 
Frequencies 

Assume for some categorical characteristic the number of individuals in each of k categories 
has been counted. A common problem is to determine if the numbers in the categories are 
significantly different from hypothetical numbers defined by the theoretical proportions in 
populations: 
 

H0: p1 = p1,0, p2 = p2,0, ..., pk = pk,0  
(that is H0: pi = pi,0 for each i) 

H1: pi ≠ pi,0 for at least one i  
 

where 
n
yp i

i =  is the proportion in any category i, and pi,0 is the expected proportion, n is 

the total number of observations, n = Σi yi ,   i = 1,..., k.  
 
A test statistic:  
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has a chi-square distribution with (k – 1) degrees of freedom. Here, k is the number of 
categories, and E(yi) = n pi,0 is the expected number of observations in category i.  
 
The null hypothesis, H0, is rejected if the calculated χ2 > χ2

α, where χ2
α is a critical value for 

the significance level α, that is a value of χ2 such that P(χ2 > χ2
α) = α. This holds when the 

samples are large enough, usually defined as when the expected number of observations in 
each category is greater than five. 
 
 
Example: The expected proportions of white, brown and pied rabbits in a population are 
0.36, 0.48 and 0.16 respectively. In a sample of 400 rabbits there were 140 white, 240 
brown and 20 pied. Are the proportions in that sample of rabbits different than expected? 
 
The observed and expected frequencies are presented in the following table: 
 

Color Observed (yi) Expected (E[yi]) 
White 140 (0.36)(400) = 144 
Brown 240 (0.48)(400) = 192 
Pied 20 (0.16)(400) =   64 
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The critical value of the chi-square distribution for k – 1 = 2 degrees of freedom and 
significance level of α = 0.05 is 5.991. Since the calculated χ2 is greater than the critical 
value it can be concluded that the sample is different from the population with 0.05 level of 
significance.  
 
 
6.5.1 SAS Example for Testing the Difference between Observed and Expected 

Frequencies  

The SAS program for the example of white, brown and pied rabbits is as follows. Recall 
that the expected proportions of white, brown and pied rabbits are 0.36, 0.48 and 0.16, 
respectively. In a sample of 400 rabbits, there were 140 white, 240 brown and 20 pied. Are 
the proportions in that sample of rabbits different than expected? 
 
SAS program: 
 
DATA color; 
INPUT color$ number; 
DATALINES; 
white 140 
brown 240 
pied 20 

; 
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PROC FREQ DATA=color; 
      WEIGHT number; 
      TABLES color/ TESTP=(36 48 16); 
RUN; 

 
Explanation: The FREQ procedure is used. The WEIGHT statement denotes a variable that 
defines the numbers in each category. The TABLES statement defines the category variable. 
The TESTP option defines the expected percentages. 
 
SAS output: 
                        The FREQ Procedure 
 
                              Test     Cumulative    Cumulative 
Color    Frequency  Percent  Percent    Frequency      Percent 
-------------------------------------------------------------- 
white       140      35.00    36.00        140        35.00 
brown       240      60.00    48.00        380        95.00 
pied         20       5.00    16.00        400       100.00 
 
             Chi-Square Test 
        for Specified Proportion 
        ------------------------- 
        Chi-Square        42.3611 
        DF                      2 
        Pr > ChiSq         <.0001 
 
            Sample Size = 400 

 
Explanation: The first table presents categories (Color), the number and percentage of 
observations in each category (Frequency and Percent), the expected percentage (Test 
Percent), and the cumulative frequencies and percentages. In the second table the chi-square 
value (Chi-square), degrees of freedom (DF) and P-value (Pr > ChiSq) are presented. The 
highly significant Chi-Square (P < 0.0001) indicates that color percentages differ from 
those expected. 

6.6 Hypothesis Test of Differences among Proportions from Several 
Populations  

For testing the difference between two proportions or two frequencies of successes the chi-
square test can be used. Further, this test is not limited to only two samples, but can be used 
to compare the number of successes of more than two samples or categories. Each category 
or group represents a random sample. If there are no differences among proportions in the 
populations, the expected proportions will be the same in all groups. The expected 
proportion can be estimated by using the proportion of successes in all groups together. 
Assume k groups, the expected proportion of successes is: 
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The expected proportion of failures is: 

q0 = 1 – p0  

The expected number of successes in category i is: 

E(yi) = ni p0  

where ni is the number of observations in category i. 
The expected number of failures in category i is: 

E(ni – yi) = ni q0  

The hypotheses are: 

H0: p1 = p2 = ... = pk = p0  
(H0: pi = p0 for every i) 

H1: pi ≠ p0 for at least one i  

The test statistic is: 
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with a chi-square distribution with (k – 1) degrees of freedom, k is the number of categories. 
 
 
Example: Are the proportions of cows with mastitis significantly different among three 
farms? The number of cows on farms A, B and C are 96, 132 and 72, respectively. The 
number of cows with mastitis on farms A, B and C are 36, 29 and 10, respectively. 
 
The number of cows are: n1 = 96, n2 = 132, and n3 = 72 
The number of with mastitis cows are: y1 = 36, y2 = 29, and y3 = 10 
The expected proportion of cows with mastitis is: 
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The expected proportion of healthy cows is: 

q0 = 1 – p0 = 1 – 0.25 = 0.75 

The expected numbers of cows with mastitis and healthy cows on farm A are: 

E(y1) = (96)(0.25) = 24 
E(n1 – y1) = (96)(0.75) = 72 

The expected numbers of cows with mastitis and healthy cows on farm B are: 

E(y2) = (132)(0.25) = 33 
E(n2 – y2) = (132)(0.75) = 99 
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The expected numbers of cows with mastitis and healthy cows on farm C are: 
E(y3) = (72)(0.25) = 18 
E(n3 – y3) = (72)(0.75) = 54 

The example is summarized below as a 'Contingency Table'.  
 
 Number of cows Expected number of cows 
Farm Mastitis No mastitis Total Mastitis No mastitis 
A 36 60 96 (0.25)(96) = 24 (0.75)(96) = 72 
B 29 103 132 (0.25)(132) = 33 (0.75)(132) = 99 
C 10 62 72 (0.25)(72) = 18 (0.75)(72) = 54 
Total 75 225 300 75 225 
 
The calculated value of the chi-square statistic is: 
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For the significance level α = 0.05 and degrees of freedom (3 – 1) = 2, the critical value 
χ2

0.05 = 5.991. The calculated value (13.387) is greater than the critical value, thus there is 
sufficient evidence to conclude that the incidence of mastitis differs among these farms. 
 
 
6.6.1 SAS Example for Testing Differences among Proportions from Several 

Populations  

The SAS program for the example of mastitis in cows on three farms is as follows: 
 
SAS program: 
 
DATA a; 
INPUT farm $ mastitis $ number; 
DATALINES; 
A YES   36 
A  NO   60 
B YES   29 
B  NO  103 
C  YES  10 
C  NO   62 
;  
PROC FREQ DATA=a ORDER=DATA; 
      WEIGHT number; 
      TABLES farm*mastitis/ CHISQ ; 
RUN; 
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Explanation: The FREQ procedure is used. The ORDER option keeps the order of data as 
they are entered in the DATA step. The WEIGHT statement denotes a variable that defines 
the numbers in each category. The TABLES statement defines the categorical variables. The 
CHISQ option calculates a chi-square test.  
 
SAS output: 
 
             Table of farm by mastitis 
 
        farm      mastitis 
 
        Frequency| 
        Percent  | 
        Row Pct  | 
        Col Pct  |YES     |NO      |  Total 
        ---------|--------|--------| 
        A        |     36 |     60 |     96 
                 |  12.00 |  20.00 |  32.00 
                 |  37.50 |  62.50 | 
                 |  48.00 |  26.67 | 
        ---------|--------|--------| 
        B        |     29 |    103 |    132 
                 |   9.67 |  34.33 |  44.00 
                 |  21.97 |  78.03 | 
                 |  38.67 |  45.78 | 
        ---------|--------|--------| 
        C        |     10 |     62 |     72 
                 |   3.33 |  20.67 |  24.00 
                 |  13.89 |  86.11 | 
                 |  13.33 |  27.56 | 
        ---------|--------|--------| 
     Total          75      225      300 
                    25.00    75.00   100.00 
 
           Statistics for Table of farm by mastitis 
 
    Statistic                     DF       Value      Prob 
    ------------------------------------------------------ 
    Chi-Square                     2     13.3872    0.0012 
    Likelihood Ratio Chi-Square    2     13.3550    0.0013 
    Mantel-Haenszel Chi-Square     1     12.8024    0.0003 
    Phi Coefficient                       0.2112 
    Contingency Coefficient               0.2067 
    Cramer's V                            0.2112 
 
                      Sample Size = 300 
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Explanation: The first table presents farm by mastitis categories, the number and percentage 
of observations in each category (Frequency and Percent), the percentage by farm (Col Pct) 
and the percentage by incidence of mastitis (Row Pct). In the second table chi-square value 
(Chi-square), degrees of freedom (DF) and the P value (Pr > ChiSq) along with some other 
similar tests and coefficients, are presented. The P value is 0.0012 and thus H0 is rejected.  

6.7 Hypothesis Test of Population Variance  

Populations can differ not only in their means, but also in the dispersion of observations. In 
other words populations can have different variances. A test that the variance is different 
from a hypothetical value can be one- or two-sided. The two-sided hypotheses are: 

H0: σ2 = σ2
0  

H1: σ2 ≠ σ2
0  

The following test statistic can be used: 

2
0

2
2 )1(

σ
χ sn −

=  

The test statistic has a chi-square distribution with (n – 1) degrees of freedom. For the two-
sided test H0 is rejected if the calculated χ2 is less than χ2

1-α/2 or the calculated χ2 is greater 
than χ2

α/2. Here, χ2
α/2 is a critical value such that P(χ2 > χ2

α/2) = α/2, and χ2
1-α/2 is a critical 

value such that P(χ2 < χ2
1-α/2) = α/2. 

6.8 Hypothesis Test of the Difference of Two Population Variances 

To test if the variances of two populations are different an F test can be used, providing that 
the observations are normally distributed. Namely, the ratio:  

2
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2
2

2
1

2
1

σσ
ss

÷  

has an F distribution with (n1 – 1) and (n2 –  1) degrees of freedom, where n1 and n2 are 
sample sizes. The test can be one- or two-sided. Hypotheses for the two-sided test can be 
written as: 

H0: σ2
1 = σ2

2  
H1: σ2

1 ≠ σ2
2  

As a test statistic the following quotient is used:  

2
2

2
1

s
s   

The quotient is always expressed with the larger estimated variance in the numerator. The 

H0 is rejected if 1,1,2/2
2

2
1

21 −−≥ nnF
s
s

α , where 1,1,2/ 21 −− nnFα  is a critical value such that the 

probability 2/)( 1,1,2/ 21
αα => −− nnFFP . 
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An alternative to be used for populations in which observations are not necessary normally 
distributed is the Levene test. The Levene statistic is: 

( ) ( )
( ) ( )∑∑

∑
−−

−−
=

i j iij

i ii

uuk

uunkN
Le 2

2

.1

...
 i = 1,..., k,  j = 1,..., ni  

where: 
N = the total number of observations 
k = the number of groups 
ni = the number of observations in a group i  

.iijij yyu −=   
yij = observation j in group i  

.iy = the mean of group i  
.iu  = the mean of group for uij  
..u  = the overall mean for uij  

 
An F distribution is used to test the differences in variances. The variances are different if 
the calculated value Le is greater than Fα, k-1, N-k. 

6.9 Hypothesis Tests Using Confidence Intervals  

Calculated confidence intervals can be used in hypothesis testing such that, if the calculated 
interval contains a hypothetical parameter value, then the null hypothesis is not rejected. For 
example, for testing hypotheses about a population mean: 

H0: µ =µ0  
H1: µ ≠ µ0  

The following confidence interval is calculated: 

y  ± za/2 yσ   

If that interval contains µ0, the null hypothesis is not rejected. 
 
 
Example: Assume that milk production has been measured on 50 cows sampled from a 
population and the mean lactation milk yield was 4000 kg. Does that sample belong to a 
population with a mean µ0 = 3600 kg and standard deviation σ = 1000 kg? 
 
The hypothetical mean is µ0 = 3600 kg and the hypotheses are: 

H0: µ = 3600 kg 
H1: µ ≠ 3600 kg 

4000=y  kg 
n = 50 cows  
σ = 1000 kg 
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A calculated confidence interval is: 

y  ± zα/2 yσ   

For a 95% confidence interval, α = 0.05 and zα/2 = z0.025 = 1.96  

4.141
50

1000
===

ny
σσ   

The interval is (3722.9 to 4277.1 kg).  
Since the interval does not contain µ0 = 3600, it can be concluded that the sample does not 
belong to the population with the mean 3600, and that these cows have higher milk yield 
than those in the population.  
 
The confidence interval approach can be used in a similar way to test other hypotheses, such 
as the difference between proportions or populations means, etc. 

6.10 Statistical and Practical Significance 

Statistical significance does not always indicate a practical significance. For example, 
consider the use of a feed additive that results in a true increase of 20g of daily gain in 
cattle. This difference is relatively small and may be of neither practical nor economic 
importance, but if sufficiently large samples are tested the difference between them can be 
found to be statistically significant. Alternatively, the difference between the populations 
can be of practical importance, but if small samples are used for testing it may not be 
detected.  

The word ‘significant’ is often used improperly. The term significant is valid only for 
samples. The statement: “There is a significant difference between sample means”, denotes 
that their calculated difference leads to a P value small enough that H0 is rejected. It is not 
appropriate to state that “the population means are significantly different”, because 
population means can be only practically different. Therefore, they are different or they are 
not different. Samples are taken from the populations and tested to determine if there is 
evidence that the population means are different. 

6.11 Types of Errors in Inferences and Power of Test 

A statistical test can have only two results: to reject or fail to reject the null hypothesis H0. 
Consequently, based on sample observations, there are two possible errors: 

a) type I error = rejection of H0, when H0 is actually true  
b) type II error = failure to reject H0, when H0 is actually false  

 
The incorrect conclusions each have probabilities. The probability of a type I error is 
denoted as α, and the probability of a type II error is denoted as β. The probability of a type 
I error is the same as the P value if H0 is rejected. The probability that H1 is accepted and H1 
is actually true is called the power of test and is denoted as (1 – β). The relationships of 
conclusions and true states and their probabilities are presented in the following table: 
 



Chapter 6  Hypothesis Testing  93 

 

 True situation 

Decision of a statistical test  H0 correct 
no true difference 

H0 not correct 
a true difference exists 

H0 not rejected Correct acceptance 
P = 1 – α 

Type II error 
P = β 

H0 rejected Type I error 
P = α 

Correct rejection 
P = 1 – β 

 
The following have influence on making a correct conclusion: 

1) sample size  
2) level of significance α 
3) effect size (desired difference considering variability)  
4) power of test (1 – β).  

 
When planning an experiment at least three of those factors should be given, while the 
fourth can be determined from the others. To maximize the likelihood of reaching the 
correct conclusion, the type I error should be as small as possible, and the power of test as 
large as possible. To approach this, the sample size can be increased, the variance 
decreased, or the effect size increased. Thus, the level of significance and power of test 
must be taken into consideration when planning the experiment. When a sample has already 
been drawn, α and β cannot be decreased the same time. Usually, in conducting a statistical 
test the probability of a type I error is either known or easily computed. It is established by 
the researcher as the level of significance, or is calculated as the P value. On the other hand, 
it is often difficult to calculate the probability of a type II error (β) or analogous power of 
test (1 – β). In order to determine β, some distribution of H1 must be assumed to be correct. 
The problem is that usually the distribution is unknown. Figure 6.8 shows the probability β 
for a given probability α and assumed known normal distributions. If H0 is correct, the mean 
is µ0, and if H1 is correct, the mean is µ1. The case where µ0 < µ1 is shown. The value α can 
be used as the level of significance (for example 0.05) or the level of significance can be the 
observed P value. The critical value yα, and the critical region is determined with the α or P 
value. The probability β is determined with the distribution for H1, and corresponds to an 
area under the normal curve determined by the critical region: 

β = P[y < yα = yβ]  

using the H1 distribution with the mean µ1, where yα = yβ is the critical value. 
The power of test is equal to (1 – β) and this is an area under the curve H1 determined 

by the critical region: 

Power = (1 – β) = P[y > yα = yβ ]     using the H1 distribution with the mean µ1 
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Distribution when 
H1 is correct 
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Figure 6.8  Probabilities of type I and type II errors 
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Figure 6.9  Standard normal distributions for H0 and H1. The power, type I error (α) and 
type II error (β) for the one-sided test are shown. On the bottom is the original scale of 
variable y 

 
If the parameters of H0 and H1 are known, power can be determined using the 
corresponding standard normal distributions. Let µ0 and µ1 be the means, and σD0 and σD1 
the standard deviations of the H0 and H1 distributions, respectively. Using the standard 
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normal distribution, and if for example µ0 < µ1, the power for a one-sided test is the 
probability P(z > zβ) determined on the H1 distribution (Figure 6.9). 
 
The value zβ can be determined as usual, as a deviation from the mean divided by the 
corresponding standard deviation.  

1

1

D

yz
σ

µα
β

−
=  

The value yα is the critical value, expressed in the original scale, which is determined by the 
value zα: 

yα = (µ0 + zα σD0)  

Recall that the value α is determined by the researcher as the significance level. It follows 
that: 
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Therefore, if µ0 < µ1, the power is: 

Power = (1 – β) = P[z > zβ]      using the H1 distribution 

If µ0 > µ1, the power is: 

Power = (1 – β) = P[z < zβ]      using the H1 distribution 

The appropriate probability can be determined from the table area under the standard 
normal curve (Appendix B).  

For specific tests the appropriate standard deviations must be defined. For example, for 
the test of hypothesis µ1 > µ0: 
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where n0σ  and n1σ  are the standard errors of sample means for H0 and H1, 
respectively.  
 
Often, it is correct to take σ0 = σ1 = σ, and then: 
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αβ σ

µµ z
n
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= 10  

In testing the hypotheses of the difference of two means:  
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where n1 and n2 are sample sizes, and σ1
2 and σ2

2 are the population variances. 
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In testing hypotheses of a population proportion when a normal approximation is used:  

( )
npp
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/)1(
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11

1000

−

−−+
= α

β  

where p0 and p1 are the proportions for H0 and H1, respectively. 
 
Applying a similar approach the power of test can be calculated based on other estimators 
and distributions. 

For the two-sided test the power is determined on the basis of two critical values –zα/2 
and zα/2 (Figure 6.10). 
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Figure 6.10  Standard normal distributions for H0 and H1. The power, type I error (α) and 
type II error (β) for the two-sided test are shown. On the bottom is the original scale of the 
variable y 

 
Expressions for calculating zβ1 and zβ2 are similar as before, only zα is replaced by –zα/2 or 
zα/2: 
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The power is again (1 – β), the area under the H1 curve held by the critical region. Thus, for 
the two-sided test the power is the sum of probabilities:  

Power = (1 – β) = P[z < zβ1 ] + P[z > zβ2 ]      using the H1 distribution 
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One approach for estimation of power based on the sample is to set as an alternative 
hypothesis the estimated parameters or measured difference between samples. Using that 
difference, the theoretical distribution for H1 is defined and the deviation from the assumed 
critical value is analyzed. Power of test is also important when H0 is not rejected. If the 
hypothesis test has a considerable power and H0 is not rejected, H0 is likely correct. If the 
test has small power and H0 is not rejected there is a considerable chance of a type II error. 
 
 
Example: The arithmetic mean of milk yield from a sample of 30 cows is 4100 kg. Is that 
value significantly greater than 4000 kg? The variance is 250000. Calculate the power of 
the test.  
 

µ0 = 4000 kg (if H0) 
4100=y  kg (= µ1 if H1) 

σ2 = 250000, and the standard deviation is σ = 500 kg 

095.1
30500

400041000 =
−

=
−

=
n

yz
σ

µ  

For α = 0.05, zα = 1.65, since the calculated value z = 1.095 is not more extreme than the 
critical value zα = 1.65, H0 is not rejected with α = 0.05. The sample mean is not 
significantly different than 4000 kg. The power of the test is: 

( ) 55.065.1
30500

4100400010 =+
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Using the H1 distribution, the power is P(z > zβ) = P(z > 0.55) = 0.29. The type II error, that 
is, the probability that H0 is incorrectly accepted is 1 – 0.29 = 0.71. The high probability of 
error is because the difference between means for H0 and H1 is relatively small compared to 
the variability.  
 
 
Example: Earlier in this chapter there was an example with mice and a test to determine if 
the sex ratio was different than 1:1. Out of a total of 200 captured mice, the number of 
males was µ1 = 110. Assume that this is the real number of males if H1 is correct. If H0 is 
correct, then the expected number of males is µ0 = 100.  
 
The critical value for the significance level α = 0.05 and the distribution if H0 is correct is 

zα = 1.65. The proportions of males if H1 holds is 55.0
200
110

1 ==p . Then:  

( )
24.0

200/)55.0)(45.0(
55.0200/)5.0)(5.0(65.15.0

=
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=βz  

The power, (1 – β), is the probability P(z > 0.24) = 0.41. As the power is relatively low, the 
sample size must be increased in order to show that sex ratio has changed. 
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For samples from a normal population and when the variance is unknown, the power of test 
can be calculated by using a student t distribution. If H0 holds, then the test statistic t has a 
central t distribution with df degrees of freedom. However, if H1 holds, then the t statistic 
has a noncentral t distribution with the noncentrality parameter λ and df degrees of freedom. 
Let tα be the critical value for the α level of significance. The power of test is calculated by 
using the value tα and the probability (areas) from the noncentral t distribution.  

For the one-sided test of hypotheses of the population mean, H0: µ =µ0, versus 
H1: µ = µ1, and for example, µ1 > µ0, the power is: 

Power = (1 – β) = P[t > tα = tβ] 

using the t distribution for H1, with the noncentrality parameter n
s

01 µµ
λ

−
=  and 

degrees of freedom df = n – 1. Here, s = the sample standard deviation, and n is the sample 
size. The difference µ1 – µ0 is defined as a positive value, and then the noncentral 
distribution for H1 is situated on the right of the distribution for H0 and the power is 
observed at the right tail of the H1 curve (Figure 6.11).  
 

 
Figure 6.11  Significance and power of the one-sided t test. The t statistic has a central t 
distribution if H0 is true, and a noncentral distribution if H1 is true. The distributions with 20 
degrees of freedom are shown. The critical value is tα. The area under the H0 curve on 
the right of the critical value is the level of significance (α). The area under the H1 curve 
on the right of the critical value is the power (1 – β). The area under the H1 curve on the 
left of the critical value is the type II error (β) 

 
For the two-sided test of the population mean the power is: 

Power = (1 – β) = P[t < –tα/2 = tβ1/2] + P[t > tα/2 = tβ2/2] 

using a t distribution for H1, with the noncentrality parameter n
s

01 µµ
λ

−
=  and degrees 

of freedom df = n – 1 (Figure 6.12). 
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Figure 6.12  The significance and power of the two-sided t test. The t statistic has a 
central t distribution if H0 is true, and a noncentral distribution if H1 is true. The 
distributions with 20 degrees of freedom are shown. The critical values are –tα/2. and tα/2. 
The sum of areas under the H0 curve on the left of –tα/2 and on the right of tα/2 is the level 
of significance (α). The sum of areas under the H1 curve on the left of –tα/2 and on the 
right of tα/2 is the power (1 – β). The area under the H1 curve between –tα/2 and tα/2 is the 
type II error (β) 

 
For the one-sided test of the difference of two population means, H0: µ1 – µ2 = 0, versus 
H1: µ1 – µ2 = δ, and for µ1 > µ2, the power is: 

Power = (1 – β) =  P[t > tα = tβ ] 

using a t distribution for H1 with the noncentrality parameter 
2
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of freedom df = 2n – 2. Here, 
2

)1()1(

21

2
22

2
11

−+
−+−

=
nn

snsnsp  denotes the pooled standard 

deviation calculated from both samples, s1 and s2 are standard deviations, and n1 and n2 are 
the sample sizes drawn from populations 1 and 2. 
 
For the two-sided test of the difference between two population means, the power is: 

Power = (1 – β) = P[t < –tα/2 = tβ1] + P[t > tα/2 = tβ2] 

using a t distribution for H1 with the noncentrality parameter 
2

21 n
sp
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−
=  and degrees 

of freedom df = 2n – 1. 
 
 
6.11.1 SAS Examples for the Power of Test 

Example: Test the hypothesis that the sample mean of milk yield of 4300 kg is different 
than the population mean of 4000 kg. The sample size is nine dairy cows, and the sample 
standard deviation is 600 kg. Calculate the power of the test by defining 
H1: µ = y  = 4300 kg.  
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µ0 = 4000 kg (if H0) 
4300=y  kg (= µ1 if H1) 

s = 600 kg. 

5.1
9600

400043000 =
−

=
−

=
ns

yt µ  

 
For α = 0.05, and degrees of freedom (n – 1) = 8, the critical value for the one-sided test is 
t0.05 = 1.86. The calculated t = 1.5 is not more extreme than the critical value, and H0 is not 
rejected. The sample mean is not significantly greater than 4000 kg.  
 
The power of test is: 

Power = (1 – β) = P[t > t0.05 = tβ] 

Using a t distribution for H1 with the noncentrality parameter 

5.19
600

4000430001 =
−

=
−

= n
s

µµ
λ  and degrees of freedom df = 8,  

the power is: 

Power = (1 – β) = P[t > 1.86] = 0.393 

The power of test can be calculated by using a simple SAS program. One- and two-sided 
tests are given: 
 
DATA a; 
alpha=0.05; 
n=9; 
mi0=4000; 
mi1=4300; 
stdev=600; 
df=n-1; 
lambda=(ABS(mi1-mi0)/stdev)*SQRT(n); 
tcrit_one_tail=TINV(1-alpha,df);   
tcrit_low=TINV(alpha/2,df);   
tcrit_up=TINV(1-alpha/2,df);   
power_one_tail=1-CDF('t',tcrit_one_tail,df,lambda); 
power_two_tail=CDF('t',tcrit_low,df,lambda)+ 1-CDF('t',tcrit_up,df,lambda); 
PROC PRINT; 
RUN; 

 
Explanation: First are defined: alpha = significance level, n = sample size, mi0 = µ0 = the 
population mean if H0 is true, mi1 = y  = µ1 = the population mean if H1 is true, stdev = the 
sample standard deviation, df = degrees of freedom. Then, the noncentrality parameter 
(lambda) and critical values (tcrit_one_tail) for a one-sided test, and tcrit_low and tcrit_up 
for a two-sided test) are calculated. The critical value is computed by using the TINV 
function, which must have cumulative values of percentiles (1 – α = 0.95, α/2 = 0.025 and 
1 – α/2 = 0.975) and degrees of freedom df. The power is calculated with the CDF function. 
This is a cumulative function of the t distribution, which needs the critical value, degrees of 
freedom, and the noncentrality parameter lambda to be defined. As an alternative to the 
CDF('t',tcrit,df,lambda), the function PROBT(tcrit,df,lambda) can also be used. The PRINT 
procedure gives the following SAS output:  
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SAS output: 
 
alpha   n    mi0     mi1    stdev   df   lambda   
0.05    9    4000    4300    600     8    1.5   
 
tcrit_       tcrit_                  power_      power_ 
one_tail      low       tcrit_up    one_tail    two_tail 
1.85955     -2.30600    2.30600     0.39277     0.26275 

 
Thus, the powers of test are 0.3977 for the one-sided and 0.26275 for the two-sided test. 
 
 
Another example: Two groups of eight cows were fed two different diets (A and B) in 
order to test the difference in milk yield. From the samples the following was calculated:  
 

 Diet A Diet B 
Mean ( y ), kg 21.8 26.4 
Std. deviation (s) 4.1 5.9 
Number of cows (n) 7 7 

 
Test the null hypothesis, H0: µ2 – µ1 = 0, and calculate the power of test by defining the 
alternative hypothesis H1: µ2 – µ1 = 12 yy −  = 4.6 kg.  
 
The test statistic is: 
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The standard deviation is:  
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The calculated t value is:  
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For α = 0.05 and degrees of freedom (n1 + n2 – 2) = 12, the critical value for the two-sided 
test is t0.25 = 2.179. The calculated t = 1.694 is not more extreme than the critical value and 
H0 is not rejected.  
 
The power for this test is: 

Power = (1 – β) = P[t > –tα/2 = tβ1] + 1 – P[t > tα/2 = tβ2]  
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Using a t distribution for H1 with the noncentrality parameter  

694.1
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λ  and degrees of freedom df = 12, the 

power is: 

Power = (1 – β) = P[t > –2.179] + P[t > 2.179] = 0.000207324 + 0.34429 = 0.34450 
 
The SAS program for this example is as follows: 
 
DATA aa; 
alpha=0.05; 
n1=7; 
n2=7; 
mi1=21.8; 
mi2=26.4; 
stdev1=4.1; 
stdev2=5.9; 
df=n1+n2-2; 
sp = SQRT(((n1-1)*stdev1*stdev1+(n2-1)*stdev2*stdev2)/(n1+n2-2)); 
lambda=(ABS(mi2-mi1)/sp)/sqrt(1/n1+1/n2); 
tcrit_low=TINV(alpha/2,df);   
tcrit_up=TINV(1-alpha/2,df);   
tcrit_one_tail=TINV(1-alpha,df);   
power_one_tail=1-CDF('t',tcrit_one_tail,df,lambda); 
power_two_tail=CDF('t',tcrit_low,df,lambda)+ 1-CDF('t',tcrit_up,df,lambda); 
PROC PRINT; 
RUN; 

 
Explanation: First are defined: alpha = significance level, n1 and n2 = sample sizes, mi1 = 
µ1 = 1y  = the mean of population 1, mi2 = µ2 = 2y  = the mean of population 2, df = degrees 
of freedom, sp calculates the pooled standard deviation. The noncentrality parameter 
(lambda) and critical values (tcrit_one_tail) for one-sided test, and tcrit_low and tcrit_up 
for a two-sided test) are calculated. The critical value is computed by using the TINV 
function, which must have cumulative values of percentiles (1 – α = 0.95, α/2 = 0.025 and 
1 – α/2 = 0.975) and degrees of freedom df. The power is calculated with the CDF function. 
This is a cumulative function of the t distribution, which needs the critical value, degrees of 
freedom and the noncentrality parameter lambda to be defined. As an alternative to 
CDF('t',tcrit,df,lambda) the function PROBT(tcrit,df,lambda) can also be used. The PRINT 
procedure gives the following: 
 
alpha  n1  n2   mi1   mi2  stdev1  stdev2  df     sp     lambda 
0.05   7   7  21.8  26.4    4.1     5.9   12    5.08035  1.69394 
 
  tcrit_                  tcrit_      power_      power_ 
   low      tcrit_up    one_tail    one_tail    two_tail 
-2.17881     2.17881     1.78229     0.48118     0.34450 

 
Thus, the powers are 0.48118 for the one-sided and 0.34450 for the two-sided tests. 
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6.12 Sample Size 

In many experiments the primary goal is to estimate the population mean from a normal 
distribution. What is the minimum sample size required to obtain a confidence interval of 2δ 
measurement units? To do so requires solving the inequality: 

δσ
α ≤

n
z 2/  

Rearranging: 
2

2/ 





≥

δ
σ

αzn  

Here: 
n = required sample size 
zα/2 = the value of a standard normal variable determined with α/2 
δ = one-half of the confidence interval 
σ = the population standard deviation 

 
With a similar approach, the sample size can be determined for the difference between 
population means, the population regression coefficient, etc. 
 
In determining the sample size needed for rejection of a null hypothesis, type I and type II 
errors must be taken into consideration. An estimate of sample size depends on: 

1) The minimum size of difference that is desired for detection 
2) The variance 
3) The power of test (1 – β), or the certainty with which the difference is detected 
4) The significance level, which is the probability of type I error 
5) The type of statistical test 

Expressions to calculate the sample size needed to obtain a significant difference with a 
given probability of type I error and power can be derived from the formulas for calculation 
of power, as shown on the previous pages.  
 
An expression for a one-sided test of a population mean is: 

( ) 2
2

2

σ
δ

βα zz
n

−
=  

An expression for a one-sided test of the difference of two population means is:  

( ) 2
2

2

2σ
δ

βα zz
n

−
=  

where: 
n = required sample size 
zα = the value of a standard normal variable determined with α probability of  
type I error 
zβ = the value of a standard normal variable determined with β probability of  
type II error 
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δ = the desired minimum difference which can be declared to be significant 
σ2 = the variance  

 
For a two-sided test replace zα with zα/2 in the expressions. 
 
The variance σ2 can be taken from the literature or similar previous research. Also, if the 
range of data is known, the variance can be estimated from: 

σ2 = [(range) / 4]2 

 
 
Example: What is the sample size required in order to show that a sample mean of 4100 kg 
for milk yield is significantly larger than 4000 kg? It is known that the standard deviation is 
800 kg. The desired level of significance is 0.05 and power is 0.80.  
 
µ0 = 4000 kg and 4100=y  kg, thus the difference is δ = 100 kg, and σ2 = 640000 
 
For α = 0.05, zα = 1.65 
For power (1 – β) = 0.80, zβ = –0.84 
Then: 

( ) ( ) 396.8640000
100

84.065.1
2

2
2

2

2

=
+

=
−

= σ
δ

βα zz
n  

Thus, 397 cows are needed to have an 80% chance of proving that a difference as small as 
100 kg is significant with α = 0.05.  
 
 
For observations drawn from a normal population and when the variance is unknown, the 
required sample size can be determined by using a noncentral t distribution. If the variance 
is unknown, the difference and variability are estimated.  
 
 
6.12.1 SAS Examples for Sample Size 

The required sample size for a t test can be determined by using SAS. The simple way to do 
that is to calculate powers for different sample sizes n. The smallest n resulting in power 
greater than that desired is the required sample size.  
 
 
 
Example: Using the example of milk yield of dairy cows with a sample mean of 4300 kg 
and standard deviation of 600 kg, determine the sample size required to find the sample 
mean significantly different from 4000 kg, with the power of 0.80 and level of significance 
of 0.05.  
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SAS program: 
 
DATA a; 
DO n = 2 TO 100; 
alpha=0.05; 
mi0=4000; 
mi1=4300; 
stdev=600; 
df=n-1; 
lambda=(abs(mi1-mi0)/stdev)*sqrt(n); 
tcrit_one_tail=TINV(1-alpha,df);   
tcrit_low=TINV(alpha/2,df);   
tcrit_up=TINV(1-alpha/2,df);   
power_one_tail=1-CDF('t',tcrit_one_tail,df,lambda); 
power_two_tail=CDF('t',tcrit_low,df,lambda)+ 1-CDF('t',tcrit_up,df,lambda); 
OUTPUT; 
END; 
PROC PRINT data=a (obs=1 ); 
TITLE 'one-tailed'; 
WHERE power_one_tail > .80; 
VAR alpha n df power_one_tail; 
RUN; 
PROC PRINT data=a (obs=1 ); 
TITLE 'two-tailed'; 
WHERE power_two_tail > .80; 
VAR alpha n df power_two_tail; 
RUN; 

 
Explanation: The statement, DO n = 2 to 100, directs calculation of the power for 
sample sizes from 2 to 100. The following are defined: alpha = significance level, 
n = sample size, mi0 = µ0 = the population mean if H0 is true, mi1 = y  = µ1 = the 
population mean if H1 is true, stdev = the sample standard deviation. 
 
SAS output: 
 

                   one-tailed          
                                   power_ 
      Obs    alpha     n    df    one_tail 
      26     0.05     27    26     0.81183 
 
                   two-tailed          
                                   power_ 
      Obs    alpha     n    df    two_tail 
      33     0.05    34    33     0.80778 
 
In order that the difference between sample and population means would be significant with 
0.05 level of significance and the power of 0.80, the required sample sizes are at least 27 
and 34 for one- and two-sided tests, respectively.  
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Another example: Two groups of eight cows were fed two different diets (A and B) in 
order to test the difference in milk yield. From the samples the following was calculated:  
 

 Diet A Diet B 
Mean ( y ) 21.8 kg 26.4 
Standard deviation (s) 4.1 5.9 
Number of cows (n) 7 7 

 
Determine the sample sizes required to find the samples means significantly different with 
power of 0.80 and level of significance α = 0.05. 
 
SAS program: 
 
DATA aa; 
do n = 2 to 100; 
alpha=0.05; 
mi1=21.8; 
mi2=26.4; 
stdev1=4.1; 
stdev2=5.9; 
df=2*n-2; 
sp = sqrt(((n-1)*stdev1*stdev1+(n-1)*stdev2*stdev2)/(n+n-2)); 
lambda=(abs(mi2-mi1)/sp)/sqrt(1/n+1/n); 
tcrit_low=TINV(alpha/2,df);   
tcrit_up=TINV(1-alpha/2,df);   
tcrit_one_tail=TINV(1-alpha,df);   
power_one_tail=1-CDF('t',tcrit_one_tail,df,lambda); 
power_two_tail=CDF('t',tcrit_low,df,lambda)+ 1-CDF('t',tcrit_up,df,lambda); 
OUTPUT; 
END; 
PROC PRINT DATA=aa (obs=1 ); 
TITLE 'one-tailed'; 
WHERE power_one_tail > .80; 
VAR alpha n df power_one_tail; 
RUN; 
PROC PRINT DATA=aa (obs=1 ); 
TITLE 'two-tailed'; 
WHERE power_two_tail > .80; 
VAR alpha n df power_two_tail; 
RUN; 

 
Explanation: The statement, DO n = 2 to 100; directs calculation of power for sample sizes 
from 2 to 100. The following are defined: alpha = significance level, mi1 = µ1 = 1y  = the 
mean of population 1, mi2 = µ2 = 2y  = the mean of population 2, df = degrees of freedom. 
sp calculates the pooled standard deviation. Next, the noncentrality parameter (lambda) and 
critical values (tcrit_one_tail for a one-sided test, and tcrit_low and tcrit_up for a two-sided 
test) are calculated. The critical value is calculated by using the TINV function with 
cumulative values of percentiles (1 – α = 0.95, α/2 = 0.025 and 1 – α/2 = 0.975) and degrees 
of freedom df. The power is calculated with the CDF function. This is a cumulative function 
of the t distribution, which needs the critical value, degrees of freedom and the noncentrality 
parameter lambda to be defined. As an alternative to CDF('t',tcrit,df,lambda) the function 
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PROBT(tcrit,df,lambda) can be used. The PRINT procedures give the following SAS 
output:  
 
SAS output: 
 
              one-tailed                    
 
                               power_ 
        alpha     n    df    one_tail 
         0.05    16    30     0.80447 
 
              two-tailed                      
 
                               power_ 
         alpha     n    df    two_tail 
          0.05    21    40     0.81672 

 
In order for the difference between the two sample means to be significant with α = 0.05 
level of significance and power of 0.80, the required sizes for each sample are at least 16 
and 21 for one- and two-sided tests, respectively.  

Exercises  

6.1. The mean of a sample is 24 and the standard deviation is 4. Sample size is n = 50.  Is 
there sufficient evidence to conclude that this sample does not belong to a population with 
mean = 25? 
 
6.2. For two groups, A and B, the following measurements have been recorded:  
 

A 120 125 130 131 120 115 121 135 115 
B 135 131 140 135 130 125 139 119 121 

 
Is the difference between group means significant at the 5% level? State the appropriate 
hypotheses, test the hypotheses, and write a conclusion.  
 
6.3. Is the difference between the means of two samples A and B statistically significant if 
the following values are known:  
 

Group A B 
Sample size 22 22 
Arithmetic mean 20 25 
Sample standard deviation 2 3  

 
6.4. In an experiment 120 cows were treated five times and the number of positive 
responses is shown below. The expected proportion of positive responses is 0.4. Is it 
appropriate to conclude that this sample follows a binomial distribution with p ≠ 0.4? 
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The number of positive 
responses 0 1 2 3 4 5 

Number of cows 6 20 42 32 15 5 
 
6.5. The progeny resulting from crossing two rabbit lines consist of 510 gray and 130 white 
rabbits. Is there evidence to conclude that the hypothetical ratio between gray and white 
rabbits is different than 3:1?  
 
6.6. The expected proportion of cows with a defective udder is 0.2 (or 20%). In a sample of 
60 cows, 20 have the udder defect. Is there sufficient evidence to conclude that the 
proportion in the sample is significantly different from the expected proportion? 
 
6.7. Two groups of 60 sheep received different diets. During the experiment 18 and 5 sheep 
from the first and the second groups, respectively, experienced digestion problems. Is it 
appropriate to conclude that the number of sheep that were ill is the result of different 
treatments or the differences are accidental?  
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Chapter 7  
 
Simple Linear Regression 

It is often of interest to determine how changes of values of some variables influence the 
change of values of other variables. For example, how alteration of air temperature affects 
feed intake, or how increasing the protein level in a feed affects daily gain. In both the first 
and the second example, the relationship between variables can be described with a 
function, a function of temperature to describe feed intake, or a function of protein level to 
describe daily gain. A function that explains such relationships is called a regression 
function and analysis of such problems and estimation of the regression function is called 
regression analysis. Regression includes a set of procedures designed to study statistical 
relationships among variables in a way in which one variable is defined as dependent upon 
others defined as independent variables. By using regression the cause-consequence 
relationship between the independent and dependent variables can be determined. In the 
examples above, feed intake and daily gain are dependent variables, and temperature and 
protein level are independent variables. The dependent variable is usually denoted by y, and 
the independent variables by x. Often the dependent variable is also called the response 
variable, and the independent variables are called regressors or predictors. When the change 
of the dependent variable is described with just one independent variable and the 
relationship between them is linear, the appropriate procedures are called simple linear 
regression. Multiple regression procedures are utilized when the change of a dependent 
variable is explained by changes of two or more independent variables.  
 
Two main applications of regression analysis are: 

1) Estimation of a function of dependency between variables 
2) Prediction of future measurements or means of the dependent variable using new 

measurements of the independent variable(s). 

7.1 The Simple Regression Model 

A regression that explains linear change of a dependent variable based on changes of one 
independent variable is called a simple linear regression. For example, the weight of cows 
can be predicted by using measurements of heart girth. The aim is to determine a linear 
function that will explain changes in weight as heart girth changes. Hearth girth is the 
independent variable and weight is the dependent variable. To estimate the function it is 
necessary to choose a sample of cows and to measure the heart girth and weight of each 
cow. In other words, pairs of measurements of the dependent variable y and independent 
variable x are needed. Let the symbols yi and xi denote the measurements of weight and 
heart girth for animal i. For n animals in this example the measurements are: 
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Animal number 1 2 3 ... n 
Heart girth (x) x1  x2  x3  ... xn  
Weight (y) y1  y2  y3  ... yn  

 
In this example it can be assumed that the relationship between the x and y variables is 
linear and that each value of variable y can be shown using the following model: 

y = β0 + β1x + ε 

where: 
y = dependent variable  
x = independent variable  
β0, β1 = regression parameters  
ε = random error  

 
Here, β0 and β1 are unknown constants called regression parameters. They describe the 
location and shape of the linear function. Often, the parameter β1 is called the regression 
coefficient, because it explains the slope. The random error ε is included in the model 
because changes of the values of the dependent variable are usually not completely 
explained by changes of values of the independent variable, but there is also an unknown 
part of that change. The random error describes deviations from the model due to factors 
unaccounted for in the equation, for example, differences among animals, environments, 
measurement errors, etc. Generally, a mathematical model in which we allow existence of 
random error is called a statistical model. If a model exactly describes the dependent 
variable by using a mathematical function of the independent variable the model is 
deterministic. For example, if the relationship is linear the model is: 

y = β0 + β1x 

Note again, the existence of random deviations is the main difference between the 
deterministic and the statistical model. In the deterministic model the x variable exactly 
explains the y variable, and in the statistical model the x variable explains the y variable, but 
with random error. 

A regression model uses pairs of measurements (x1,y1),(x2,y2),...,(xn,yn). According to 
the model each observation yi can be shown as: 

yi = β0 + β1xi + εi i = 1,..., n 

that is: 
y1 = β0 + β1x1 + ε1 
y2 = β0 + β1x2 + ε2 
... 
yn = β0 + β1xn + εn 

 
 
For example, in a population of cows it is assumed that weights can be described as a linear 
function of heart girth. If the variables’ values are known, for example:  
 

Weight (y): 641 633 651 … … 
Heart girth (x): 214 215 216 … … 
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The measurements of the dependent variable y can be expressed as: 

641 = β0 + β1 214 + ε1 
633 = β0 + β1 215 + ε2 
651 = β0 + β1 216 + ε3 
… 

 
For a regression model, assumptions and properties also must be defined. The assumptions 
describe expectations and variance of random error. 
 
Model assumptions: 
 
1)   E(εi) = 0, mean of errors is equal to zero 
2)   Var(εi) = σ2, variance is constant for every εi, that is, variance is homogeneous 
3)   Cov(εi,εi’) = 0,   i ≠ i’, errors are independent, the covariance between them is zero 
4) Usually, it is assumed that εi are normally distributed, εi ~ N(0, σ2). When that assumption 

is met the regression model is said to be normal.  
 
The following model properties follow directly from these model assumptions.  
 
Model properties: 
1)  E(yi| xi) = β0 + β1xi  for a given value xi, the expected mean of yi is β0 + β1xi 
2)  Var(yi) = σ2, the variance of any yi is equal to the variance of εi and is homogeneous 
3)  Cov(yi,yi’) = 0,    i ≠ i’, y are independent, the covariance between them is zero. 
 
The expectation (mean) of the dependent variable y for a given value of x, denoted by 
E(y|x), is a straight line (Figure 7.1). Often, the mean of y for given x is also denoted by µy|x. 
 

 
  y 

E(y|x) 
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*
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   * (xi,yi) 

εi  

x 
 

Figure 7.1  Linear regression. Dots represent real observations (xi,yi). The line E(y|x) 
shows the expected value of dependent variable. The errors εi are the deviation of the 
observations from their expected values 

 
An interpretation of parameters is shown in Figure 7.2. The expectation or mean of y for a 
given x, E(yi| xi) = β0 + β1xi, represents a straight line; β0 denotes the intercept, a value of 
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E(yi|xi) when xi = 0; β1 describes the slope of the line, this is the change ∆E(yi| xi) when the 
value of x is increased by one unit. Also: 
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E(yi |xi) = β 0 + β 1xi
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Figure 7.2  Interpretation of parameters for simple linear regression 

 
A simple linear regression can be positive or negative (Figure 7.3). A positive regression 
β1 > 0, is represented by an upward sloping line and y increases as x is increased. A negative 
regression, β1 < 0, is represented by a downward sloping line and y decreases as x is 
increased. A regression with slope β1 = 0 indicates no linear relationship between the 
variables. 
 

 
Figure 7.3  a) positive regression, β1 > 0; b) negative regression, β1 < 0, c) no linear 
relationship, β1 = 0 
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7.2 Estimation of the Regression Parameters – Least Squares 
Estimation 

Regression parameters of a population are usually unknown, and they are estimated from 
data collected on a sample of the population. The aim is to determine a line that will best 
describe the linear relationship between the dependent and independent variables given data 
from the sample. Parameter estimators are usually denoted by 0β̂  and 1̂β  or b0 and b1. 
Therefore, the regression line E(y|x) is unknown, but can be estimated by using a sample 
with: 

ii xy 10
ˆˆˆ ββ +=       or  

ii xbby 10ˆ +=   

This line is called the estimated or fitted line, or more generally, the estimated regression 
line or estimated model. The best fitted line will have estimates of b0 and b1 such that it 
gives the least possible cumulative deviations from the given yi values from the sample. In 
other words the line is as close to the dependent variables as possible.  

The most widely applied method for estimation of parameters in linear regression is 
least squares estimation. The least squares estimators b0 and b1 for a given set of 
observations from a sample are such estimators that the expression 

( ) ( )[ ]2
10

2ˆ ∑∑ +−=−
i iii ii xbbyyy  is minimized. 

 
To determine such estimators assume a function in which the observations xi and yi from a 
sample are known, and β0 and β1 are unknown variables:  

Σi (yi – β0 – β1xi)2 

This function is the sum of the squared deviations of the measurements from the values 
predicted by the line. The estimators of parameters β0 and β1, say b0 and b1, are determined 
such that the function will have the minimum value. Calculus is used to determine such 
estimators by finding the first derivative of the function with respect to β0 and β1: 

( )[ ] ( )∑∑ −−−=−−
i iii ii xyxy 10

2
10

0

2 ββββ
∂β
∂  

( )[ ] ( )∑∑ −−−=−−
i iiii ii xyxxy 10

2
10

1

2 ββββ
∂β
∂  

The estimators, b0 and b1, are substituted for β0 and β1 such that: 

( ) 02 10 =−−− ∑i ii xbby  

( ) 02 10 =−−− ∑i iii xbbyx  

With simple arithmetic operations we can obtain a system of two equations with two 
unknowns, usually called normal equations: 
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The estimators, b1 and b0, are obtained by solving the equations:  
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  = sum of products of y and x. 

( )
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∑ ∑∑ −=−=
i

i i
ii ixx n

x
xxxSS

2

22
 = sum of squares of x. 

n = sample size 
      and  =xy  arithmetic means 

 
Recall that ii xbby 10ˆ +=  describes the estimated line. The difference between the 
measurement yi and the estimated value iŷ  is called the residual and is denoted with ei 
(Figure 7.4): 

( )[ ]iiiii xbbyyye 10ˆ +−=−=  

Each observation in the sample can be then written as: 

yi = b0 + b1xi + ei i = 1,...,n 

Again, the estimators, b1 and b0, are such that the sum of squared residuals Σi(ei)2 is 
minimal compared to any other set of estimators. 
 

 
Figure 7.4  Estimated or fitted line of the simple linear regression 

 
 
 

iii yye ˆ−=

* 

* 

* 

*

* *

*

* 
*   * yi

  y 

x

iŷ

ŷ



Chapter 7  Simple Linear Regression  115 

 

Example: Estimate the simple regression line of weight on heart girth of cows using the 
following sample:  
 

Cow 1 2 3 4 5 6 
Weight (y): 641 633 651 666 688 680 
Heart girth (x): 214 215 216 217 219 221 

 

Each measurement yi in the sample can be expressed as: 

641 = b0 + b1 214 + e1 
633 = b0 + b1 215 + e2 
651 = b0 + b1 216 + e2 
666 = b0 + b1 217 + e2 
688 = b0 + b1 219 + e2 
680 = b0 + b1 221 + e2 

 
The coefficients b0 and b1 must be calculated to estimate the regression line by using the 

sums Σi xi and Σi yi, sum of squares Σi x2
i and sum of products Σi xiyi as shown in the 

following table: 
 

 Weight (y) Heart girth (x) x2 xy 
 641 214 45796 137174 
 633 215 46225 136095 
 651 216 46656 140616 
 666 217 47089 144522 
 688 219 47961 150672 
 680 221 48841 150280 
Sums 3959 1302 282568 859359 

 
n = 6 

Σi xi = 1302 

Σi x2
i = 282568 

Σi yi = 3959 

Σi xiyi = 859359 
 

( )( ) ( ) ( )∑ ∑∑ =−=−=
i

i ii i
iixy n

yx
yxSS 256

6
3959 1302859359
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34
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1 ===
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05.97410 −=−= xbyb   
  

The estimated line is: 
ii  x.  . y 53705974ˆ +−=   

 
The observed and estimated values are shown in Figure 7.5. This figure provides 
information about the nature of the data, possible relationship between the variables, and 
about the adequacy of the model. 
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Figure 7.5  Regression of weight on heart girth of cows. Dots represent measured values 

 

7.3 Maximum Likelihood Estimation 

Parameters of linear regression can also be estimated by using a likelihood function. Under 
the assumption of normality of the dependent variable, the likelihood function is a function 
of the parameters (β0, β1 and σ2) for a given set of n observations of dependent and 
independent variables: 
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The log likelihood is: 
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A set of estimators is estimated that will maximize the log likelihood function. Such 
estimators are called maximum likelihood estimators. The maximum of the function can be 
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determined by taking the partial derivatives of the log likelihood function with respect to the 
parameters: 
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These derivatives are equated to zero in order to find the estimators b0, b1 and s2
ML. Three 

equations are obtained: 
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By simplifying the equations the following results are obtained: 

∑∑ =+
i ii i yxbnb 10  

∑ ∑ ∑=+
i i i iiii yxxbxb 2

10  

( )∑ −−=
i iiML xbby

n
s 2

10
2 1  

Solving the first two equations results in identical estimators as with least squares 
estimation. However, the estimator of the variance is not unbiased. This is why it is denoted 
with s2

ML. An unbiased estimator is obtained when the maximum likelihood estimator is 
multiplied by n / (n – 2), that is:  
 

22

2 MLRES s
n

nMSs
−

==  

7.4 Residuals and Their Properties 

Useful information about the validity of a model can be achieved by residual analysis. 
Residuals are values that can be thought of as ‘errors’ of the estimated model. Recall that an 
error of the true model is:  

εi = yi – E(yi)  

A residual is defined as:  

iii yye ˆ−=  
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The residual sum of squares is:  

( )2ˆ∑ −=
i iiRES yySS  

Properties of residuals are: 

1) ( )∑ =−
i ii yy 0ˆ  

2) ( )∑∑ =−=
i iii i minimumyye 22 ˆ  

The residual mean square is the residual sum of squares divided by its associated degrees of 
freedom, and is denoted by MSRES or s2: 

2
2

−
==

n
SSsMS RES

RES  

where (n – 2) is the degrees of freedom. The mean square MSRES = s2 is an estimator of the 
error variance in a population, σ2 = Var(ε). The square root of the mean square, 

2
2

−
==

n
SSss RES , is called a standard deviation of the regression model.  

 
A practical rule for determining the degrees of freedom is:  
n – (number of parameter estimated for a particular sum of squares), or  
n – (number of restriction associated with regression) 
 
In estimating a simple regression there are two restrictions: 

1) ( )∑ =−
i ii yy 0ˆ  

2) ( )∑ =−
i iii xyy 0 ˆ  

Also, two parameters, β0 and β1, are estimated, and consequently the residual degrees of 
freedom are (n – 2). 
 
The expectation of a residual is: 

E(ei) = 0 

The variance of residuals is not equal to the error variance, Var(ei) ≠ σ2. The residual 
variance depends on xi. For large n, Var(ei) ≈ σ2, which is estimated by s2, that is, E(s2) = σ2. 
Also, the covariance Cov(ei,ei’) ≠ 0, but for large n, Cov(ei,ei’) ≈ 0. 
 
 
Example: For the example with weights and heart girths of cows the residuals, squares of 
residuals, and sum of squares are shown in the following table: 
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 y x ŷ  e e2 
 641 214 637.25 3.75 14.099 
 633 215 644.77 –11.77 138.639 
 651 216 652.30 –1.30 1.700 
 666 217 659.83 6.17 38.028 
 688 219 674.89 13.11 171.816 
 680 221 689.95 –9.95 99.022 
Sum 3959 1302 3959.0 0.0 463.304 

 
The residual sum of squares is: 

( ) 304.463ˆ 2
=−= ∑i iiRES yySS  

The estimate of the variance is:  

826.115
4
304.463

2
 2 ==

−
==

n
SSMSs RES

RES   

7.5 Expectations and Variances of the Parameter Estimators  

In most cases inferences are based on estimators b0 and b1. For that reason it is essential to 
know properties of the estimators, their expectations and variances. The expectations of b0 
and b1 are: 

E(b1) = β1 
E(b0) = β0 

The expectations of the estimators are equal to parameters, which implies that the estimators 
are unbiased. The variances of the estimators are: 

xx
b SS

bVar
2

2
1 1
)( σσ ==  









+==

xx
b SS

x
n

bVar 1)( 22
0 0

σσ  

Assuming that the yi are normal, then b0 and b1 are also normal, because they are linear 
functions of yi. Since the estimator of the variance σ2 is s2, the variance of b1 can be 
estimated by: 

xx
b SS

ss
2

2
1

=   

A standard error of b1 is: 

xx
b SS

ss
2

1
=  
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7.6 Student t test in Testing Hypotheses about the Parameters 

If changing variable x effects change in variable y, then the regression line has a slope, that 
is, the parameter β1 is different from zero. To test if there is a regression in a population the 
following hypotheses about the parameter β1 are stated: 

H0: β1 = 0 
H1: β1 ≠ 0 

The null hypothesis H0 states that slope of the regression line is not different from zero and 
that there is no linear association between the variables. The alternative hypothesis H1 states 
that the regression line is not horizontal and there is linear association between the 
variables. Assuming that the dependent variable y is normally distributed, the hypotheses 
about the parameter β1 can be tested using a t distribution. It can be proved that the test 
statistic: 

xxSSs

bt
2

1 0−
=  

has a t distribution with (n – 2) degrees of freedom under H0. Note the form of the t statistic: 

 
estimator oferror  Standard

)H(under Paramater Estimatort 0−
=  

The null hypothesis H0 is rejected if the computed value from a sample |t| is “large”. For a 
level of significance α, H0 is rejected if |t| ≥ tα/2,(n-2), where tα/2,(n-2) is a critical value (Figure 
7.6). 

 

b1β1 = 0

tα/2 -tα/2 0 t 

 
Figure 7.6  Theoretical distribution of the estimator b1 and corresponding scale of the t 
statistic. Symbols tα/2 are the critical values 

 
 
Example: Test the hypotheses about the regression of the example of weight and heart girth 
of cows. The coefficient of regression was b1 = 7.53. Also, the residual sums of squares 
were SSRES = 463.304, SSxx = 34, and the estimated variance was:  
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826.115
2

2 ==
−

= RES
RES MS

n
SSs   

The standard error of the estimator b1 is: 

845.1
34

826.1152

1
===

xx
b SS

ss  

The calculated value of the t statistic from the sample is: 

079.4
845.1
53.70

2

1 ==
−

=
xxSSs

bt  

The critical value is tα/2,(n-2) = t0.025,4 = 2.776 (See Appendix B: Critical values of student t 
distribution).  
 
The calculated t = 4.079 is more extreme than the critical value (2.776), thus the estimate of 
the regression slope b1 = 7.53 is significantly different from zero and regression in the 
population exists.  
 

7.7 Confidence Intervals of the Parameters  

Recall that a confidence interval usually has the form: 
 

Estimate ± standard error x value of standard normal or t variable for α/2 
 
We have already stated that: 

1

11

bs
b β−   

has a t distribution. Here:  

xxb SSss 2
1

=   

is the standard error of the estimator b1. It can be shown that: 

{ } αβ αα −=+≤≤− −− 1
11 2,2212,21 bnbn stbstbP  

where tα/2,n-2 is a critical value on the right tail of the t distribution with α/2. The 100(1 - α)% 
confidence interval is: 

12,21 bn stb −± α  

For 95% confidence interval:  

2,025.01 1 −± nb tsb  
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Example: For the previous example of weight and heart girth of cows, construct a 95% 
confidence interval for β1. The following parameters have been calculated, α = 0.05, degrees 
of freedom = 4, t0.025,4 = 2.776, 

1b
s  = 1.846 and b1 = 7.529. 

 
The 95% confidence interval is: 

2,25.01 1 −± nb tsb  
7.529 ± (1.846)(2.776)        or equal to 
(2.406, 12.654) 

7.8 Mean and Prediction Confidence Intervals of the Response 
Variable 

In regression analysis it is also important to estimate values of the dependent variable. 
Estimation of the dependent variable includes two approaches: a) estimation of the mean for 
a given value of the independent variable x0; and b) prediction of future values of the 
variable y for a given value of the independent variable x0.  

The mean of variable y for a given value x0 is E[y|x0] = β0 + β1x0. Its estimator is 
0100ˆ xbby += . Assuming that the dependent variable y has a normal distribution, the 

estimator also has a normal distribution with mean β0 + β1x0 and variance: 
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The standard error can be estimated from: 
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Recall that SSXX is the sum of squares of the independent variable x, and s2 = MSRES is the 
residual mean square that estimates a population variance. 

Prediction of the values of variable y given a value x0 includes prediction of a random 
variable y|x0 = β0 + β1x0 + ε0. Note that y|x0 is a random variable because it holds ε0, 
compared to E[y|x0], which is a constant. An estimator of the new value is 

010,0ˆ xbby NEW += . Assuming that the dependent variable y has a normal distribution, the 
estimator also has a normal distribution with mean β0 + β1x0 and variance: 

( ) ( )







 −
++=

xx

i
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xx
n

yVar
2

2
,0

11ˆ σ  

Note that the estimators for both the mean and new values are the same. However, the 
variances are different. The standard error of the predicted values for a given value of x0 is: 

( )


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Confidence intervals follow the classical form: 

Estimator ± (standard error) (tα/2,n-2) 

A confidence interval for the population mean with a confidence level of 1 – α: 

2,2/ˆ0ˆ −± ny tsy
i α  

A confidence interval for the prediction with a confidence level of 1 – α: 

2,2/ˆ,0 ,
ˆ −± nyNEW tsy

NEWi α  

 
 
Example: For the previous example of weight and heart girth of cows calculate the mean 
and prediction confidence intervals. Recall that n = 6, SSXX = 34, MSRES = 115.826, 

217=x , b0 = –974.05, and b1 = 7.53. 
 
For example, for a value x0 = 216: 

( ) ( ) 7656.4
34
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1826.1151 22

2
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11826.11511
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43.652)216(53.705.974ˆ 216 =+−==xy  
t0.025,4 = 2.776 
 

The confidence interval for the population mean for a given value x0 = 216 with a 
confidence level of 1 – α = 0.95 is: 

)776.2)(7656.4(43.652 ±  

The confidence interval for the prediction for a given value x0 = 216 with a confidence level 
of 1 – α = 0.95 is: 

)776.2)(7702.11(43.652 ±  

Note that the interval for the new observation is wider than for the mean. 
 
 
It could be of interest to estimate confidence intervals for several given values of the x 
variable. If a 95% confidence interval is calculated for each single given value of variable x, 
this implies that for each interval the probability that it is correct is 0.95. However, the 
probability that all intervals are correct is not 0.95. If all intervals were independent, the 
probability that all intervals are correct would be 0.95k, where k is the number of intervals. 
The probability that at least one interval is not correct is (1 – 0.95k). This means that, for 
example, for 5 intervals estimated together, the probability that at least one is incorrect is 
(1 – 0.955) = 0.27, and not 0.05. Fortunately, as estimated values of dependent variable also 
depend on the estimated regression, this probability is not enhanced so drastically. To 
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estimate confidence intervals for means for several given values of x we can use the 
Working-Hotelling formula: 

pnpyi pFsy
i −± ,,ˆˆ α  

Similarly, for prediction confidence intervals: 

pnpNEWyi pFsy
i −± ,,,ˆˆ α  

where Fα,p,n-p is a critical value of the F distribution for p and (n – p) degrees of freedom, p 
is the number of parameters, n is the number of observations, and α is the probability that at 
least one interval is incorrect.  

These expressions are valid for any number of intervals. When intervals are estimated 
for all values of x, then we can define a confidence contour. A graphical presentation for the 
example is shown in Figure 7.7. The mean and prediction confidence contours are shown. 
The prediction contour is wider than the mean contour  and both intervals widen toward 
extreme values of variable x. The latter warns users to be cautious of using regression 
predictions beyond the observed values of the independent variables. 
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Figure 7.7  Confidence contours for the mean ( ___ ) and prediction (......) of the 
dependent variable for given values of x 

 

7.9 Partitioning Total Variability 

An intention of using a regression model is to explain as much variability of the dependent 
variable as possible. The variability accounted for by the model is called the explained 
variability. Unexplained variability is remaining variability that is not accounted for by the 
model. In a sample, the total variability of the dependent variable is the variability of 
measurements yi about the arithmetic mean y , and is measured with the total sum of 
squares. The unexplained variability is variability of yi about the estimated regression line 
( ŷ ) and is measured with the residual sum of squares (Figure 7.8). 
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Figure 7.8  Distribution of variability about the arithmetic mean and estimated regression 

line: (B) measured with the residual sum of squares, ( )2ˆ∑ −=
i iiRES yySS  

(A) measured with the total sum of squares, ( )2∑ −=
i iTOT yySS  

 
Comparison of the total and residual sums of squares measures the strength of association 
between independent and dependent variables x and y (Figure 7.9). If SSRES is considerably 
less than SSTOT that implies a linear association between x and y. If SSRES is close to SSTOT 
then the linear association between x and y is not clearly defined. 
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Strong linear trend: SSRES << SSTOT  Weak linear trend (if any): SSRES ≈ SSTOT  
 

Figure 7.9  Comparison of the sums of squares and linear trend 

 
Recall that along with total and unexplained variability there is a variability explained by 
the regression model, which is measured with the regression sum of squares 

( )2ˆ∑ −=
i iREG yySS . Briefly, the three sources of variability are: 
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1. Total variability of the dependent variable  
- variability about y , measured with the total sum of squares (SSTOT) 

2. Variability accounted for by the model   
- explained variability, measured with the regression sum of squares (SSREG).  

3. Variability not accounted for by the model  
- unexplained variability, variability about ŷ , measured with the residual sum of squares 
(SSRES). 

 
 
7.9.1 Relationships among Sums of Squares 

If measurements of a variable y are shown as deviations from the arithmetic mean and 
estimated regression line (Figure 7.10) then the following holds:  
 

)ˆ()ˆ()( iiii yyyyyy −+−=−  
 

 
Figure 7.10  Measurement yi expressed as deviations from the arithmetic mean and 
estimated regression line 

 
It can be shown that by taking squares of deviations for all yi points and by summing those 
squares the following also holds: 

( ) ( ) ( )222 ˆˆ ∑∑∑ −+−=−
i iii iii ii yyyyyy  

This can be written shortly as: 

SSTOT = SSREG + SSRES 

Thus, total variability can be partitioned into variability explained by regression and 
unexplained variability.  
 
The sums of squares can be calculated using shortcuts:  
1. The total sum of squares is the sum of squares of the dependent variable: 

SSTOT = SSyy 

2. The regression sum of squares is: 
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=  

3. The residual sum of squares is the difference between the total sum of squares and the 
regression sum of squares: 

xx

xy
yyRES SS

SS
  SS SS

2)(
−=  

 
 
Example: Compute the total, regression and residual sums of squares for the example of 
weight and heart girth of cows. The sum of products is SSxy = 256 and the sum of squares 
SSxx = 34. The total sum of squares is the sum of squares for y.  
 
The sums of squares are: 

( )
833.2390  

2

2 =−== ∑ ∑
i

i i
iyyTOT n

y
y SS SS  

529.1927
34

)256()( 22

===
xx

xy
REG SS

SS
SS  

SSRES = SSTOT – SSREG = 2390.833 – 1927.529 = 463.304 
 
 
7.9.2 Theoretical Distribution of Sum of Squares 

Assuming a normal distribution of the residual, SSRES/σ2 has a chi-square distribution with 
(n – 2) degrees of freedom. Under the assumption that there is no regression, that is, β1 = 0, 
SSREG/σ2 has chi-square distribution with 1 degree of freedom and SSTOT/σ2 has a chi-square 

distribution with (n – 1) degrees of freedom. Recall that a χ2 variable is equal to Σi zi
2, 

where zi are standard normal variables (i = 1 to v): 

2σ
yyz i

i
−

=  

Thus the expression:  

( )
22

2

σσ
yyi SSi yy

=
−∑  

is the sum of (n – 1) squared independent standard normal variables with a chi-square 
distribution. The same can be shown for other sums of squares. To compute the 
corresponding mean squares it is necessary to determine the degrees of freedom. Degrees of 
freedom can be partitioned similarly to sums of squares: 

SSTOT = SSREG + SSRES  (sums of squares) 

(n – 1) = 1 + (n – 2) (degrees of freedom) 
 



128  Biostatistics for Animal Science 

 

where n is the number of pairs of observations. Degrees of freedom can be empirically 
determined as: 

The total degrees of freedom: (n – 1) = 1 degree of freedom is lost in estimating 
the arithmetic mean.  
The residual degrees of freedom: (n – 2) = 2 degrees of freedom are lost in 
estimating β0 and β1. 
The regression degrees of freedom: (1) = 1 degree of freedom is used for 
estimating β1. 

 
Mean squares are obtained by dividing the sums of squares by their corresponding degrees 
of freedom: 

Regression mean square: 
1
REG

REG
SSMS =  

Residual mean square: 
2−

=
n
SSMS RES

RES  

These mean squares are used in hypotheses testing. 
 

7.10 Test of Hypotheses - F test 

The sums of squares and their distributions are needed for testing the statistical hypotheses: 
H0: β1 = 0, vs. H1: β1 ≠ 0. It can be shown that the SSREG and SSRES are independent. That 
assumption allows the F test to be applied for testing the hypotheses. The F statistic is 
defined as: 
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The following mean squares have already been defined as:  

square mean regression   
1

== REG
REG MSSS  

 square mean  residual    
2

==
− RES
RES MS

n
SS  

The F statistic is: 

RES

REG

MS
MSF =  

The F statistic has an F distribution with 1 and (n – 2) degrees of freedom if H0 is true. 

The expectations of the sums of squares are: 

E(SSRES) = σ2(n – 2)  
E(SSREG) = σ2 + β1

2SSxx  

The expectations of mean squares are: 

E(MSRES) = σ2 
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E(MSREG) = σ2 + β1
2SSxx  

 
If H0 is true, then β1 = 0, MSREG ≈ σ2, and F ≈ 1. If H1 is true, then MSREG > σ2 and F > 1. H0 
is rejected if the F statistic is “large”. For the significance level α, H0 is rejected if 
F > Fα,1,n-2, where Fα,1,n-2 is a critical value (Figure 7.11). 

f (F 1, n-2 )

F α,1,n -2

F 1,n -2

 
Figure 7.11  F distribution and the critical value for 1 and (n – 2) degrees of freedom. The 
Fα,1,n -2 denotes a critical value of the F distribution 

 
Note that for simple linear regression the F test is analogous to the t test for the parameter 
β1. Further, it holds: 

F = t2  

It is convenient to write sources of variability, sums of squares (SS), degrees of freedom (df) 
and mean squares (MS) in a table, which is called an analysis of variance or ANOVA table: 
 

Source  SS df MS = SS / df  F 
Regression SSREG 1 MSREG = SSREG / 1 F = MSREG / MSRES 
Residual  SSRES n – 2 MSRES = SSRES / (n – 2)  
Total SSTOT n – 1   

 
 
Example: Test the regression hypotheses using an F test for the example of weights and 
heart girths of cows. The following were previously computed: 
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SSRES = SSTOT – SSREG = 2390.833 – 1927.529 = 463.304 
 
The degrees of freedom for total, regression and residual are (n – 1) = 5, 1 and (n - 2) = 4, 
respectively. 
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The mean squares are: 

529.1927
1

529.1927 
1

 === REG
REG

SSMS   

 826.115
4
304.463 

2
 ==

−
=

n
SSMS RES

RES   

The value of the F statistic is:  

642.16
826.115
529.1927

===
RES

REG

MS
MSF  

 
In the form of an ANOVA table: 
 

Source  SS df MS F 
Regression 1927.529 1 1927.529 16.642 
Residual  463.304 4 115.826  
Total 2390.833 5   

 
The critical value of the F distribution for α = 0.05 and 1 and 4 degrees of freedom is 
F0.05,1,4 = 7.71 (See Appendix B: Critical values of the F distribution). Since the calculated 
F = 16.642 is greater than the critical value, H0 is rejected.  

7.11 Likelihood Ratio Test 

The hypotheses H0: β1 = 0 vs. H1: β1 ≠ 0, can be tested using likelihood functions. The idea 
is to compare the values of likelihood functions using estimates for H0 and H1. Those values 
are maximums of the corresponding likelihood functions.  
 
The likelihood function under H0 is:  
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Note that µ = β0. 
The corresponding maximum likelihood estimators are:  
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Using the estimators, the maximum of the likelihood function is:  
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The likelihood function when H0 is not true is: 
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and the corresponding maximum likelihood estimators are:  
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Using the estimators, the maximum of the likelihood function is:  
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The likelihood ratio statistic is: 
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Further, a natural logarithm of this ratio multiplied by (–2) is distributed approximately as a 
chi-square with one degree of freedom:  
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For a significance level α, H0 is rejected if –2logΛ > χ2
α, where χ2

 α is a critical value. 
For a regression model there is a relationship between the likelihood ratio test and the 

F test. The logarithms of likelihood expressions can be expressed as: 
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Thus: 
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Assuming the variance σ 2 is known then:  
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where: 

( ) TOTi i SSyy =−∑ 2  = the total sum of squares 

( ) RESi ii SSxbby =−−∑ 2
10  = the residual sum of squares, and 

SSTOT – SSRES = SSREG = the regression sum of squares 
 
Thus:  





=− 22

σ
REGSSΛlog  

Estimating σ2 from the regression model as 
2

2

−
==

n
SSMSs RES

RES , and having 

1
REG

REG
SSMS = , note that asymptotically –2logΛ divided by the degrees of freedom (for 

linear regression they equal one) is equivalent to the F statistic as shown before.  

7.12 Coefficient of Determination  

The coefficient of determination is often used as a measure of the correctness of a model, 
that is, how well a regression model will fit the data. A ‘good’ model is a model where the 
regression sum of squares is close to the total sum of squares, TOTREG SSSS ≈ . A “bad” 
model is a model where the residual sum of squares is close to the total sum of squares, 

TOTRES SSSS ≈ . The coefficient of determination represents the proportion of the total 
variability explained by the model: 
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TOT

REG

SS
SSR =2  

Since an increase of the regression sum of squares implies a decrease of the residual sum of 
squares, the coefficient of determination is also: 

TOT

RES

SS
SSR −= 12  

The coefficient of determination can have values 10 2 ≤≤ R . The “good” model means that 
R2 is close to one. 
 
 
7.12.1 Shortcut Calculation of Sums of Squares and the Coefficient of Determination  

The regression and total sum squares can be written as: 

SSREG = b2
1 SSxx 

SSTOT = SSyy 
Since:  
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The coefficient of determination is: 
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Example: Compute a coefficient of determination for the example of weights and heart 

girths of cows. 

529.1927
34

)256()( 22

===
xx

xy
REG SS

SS
SS  

or  
SSREG = b1SSxx = (7.529)2 (34) = 1927.529 
SSTOT = SSyy = 2390.833 

81.0
833.2390
529.19272 ===

TOT

REG

SS
SSR  

 
Thus, the regression model explains 81% of the total variability, or variation in heart girth 
explains 81% of the variation in weight of these cows.  
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7.13 Matrix Approach to Simple Linear Regression 

7.13.1 The Simple Regression Model 

Since a regression model can be presented as a set of linear equations, those equations can 
be shown using matrices and vectors. Recall that the linear regression model is: 

yi = β0 + β1xi + εi i = 1,..., n 

yi = observation i of the dependent variable y  
xi = observation i of the independent variable x  
β0 , β1 = regression parameters 
εi = random error  
 
Thus: 

y1 = β0 + β1x1 + ε1 
y2 = β0 + β1x2 + ε2 
... 
yn = β0 + β1xn + εn 

 
The equivalently defined vectors and matrices are: 
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where: 
y = the vector of observations of a dependent variable 
X = the matrix of observations of an independent variable 
β = the vector of parameters 
ε = the vector of random errors 

 
Using those matrices and vectors the regression model is: 

y = Xβ + ε 

The expectation of y is: 

( ) Xβy =
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The variance of y is: 

Var(y) = σ2I  

Also, E(ε) = 0 and Var(ε) = σ2I , that is, the expectation of error is zero and the variance is 
constant. The 0 vector is a vector with all elements equal to zero. 
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Assuming a normal model the y vector includes random normal variables with multi-
normal distribution with the mean Xβ and variance Iσ2. It is assumed that each observation 
y is drawn from a normal population and that all y are independent of each other, but with 
the same mean and variance.  
The estimation model is defined as: 

Xby =ˆ  

where: 
=ŷ  the vector of estimated (fitted) values  









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0

b
b

b  = the vector of estimators 

The vector of residuals is the difference between the observed y vector and the vector of 
estimated values of the dependent variable: 
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Thus, a vector of sample observations is: 

y = Xb + e 

 
 
7.13.2 Estimation of Parameters 

By using either least squares or maximum likelihood estimation, the following normal 
equations are obtained: 

(X'X)b = X'y 

Solving for b gives: 

b = (X'X)–1X'y 

The X'X, X'y and (X'X)–1 matrices have the following elements: 
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Properties of the estimators, the expectations and (co)variances are: 

E(b) = β 









 = )(= 1−2

)(),(
),()(

  )Var(
110

100

bVarbbCov
bbCovbVar

XX'b σ  

Using an estimate of the variance from a sample, s2, the variance of the b vector equals: 

s2(b) = s2(X'X)–1 

The vector of estimated values of the dependent variable is: 

( ) XyXXXXby 1−== 'ˆ  

The variance of estimated values is: 

( ) ( ) ( ) ( ) 21 '''ˆ σXXXXXbXXby −=== VarVarVar  
Using s2 instead of σ2 the estimator of the variance is: 

( ) 212
ˆ '' sXXXXsy

−=  

The regression sum of squares (SSREG), residual sum of squares (SSRES) and total sum of 
squares (SSTOT) are:  

( )2ˆ)ˆ()'ˆ( ∑ −=−−=
i iREG yySS yyyy  

( )2ˆ)ˆ()'ˆ( ∑ −=−−=
i iiRES yySS yyyy  

( )2
)()'( ∑ −=−−=

i iTOT yySS yyyy  

or shortly using the b vector: 
2'' ynSSREG −= yXb  
yXbyy ''' −=RESSS  

2' ynSSTOT −= yy  
 
 
Example: Estimate the regression for the example of weights and heart girths of cows. 
Measurements of six cows are given in the following table: 
 

Cow 1 2 3 4 5 6 
Weight (y): 641 633 651 666 688 680 
Heart girth (x): 214 215 216 217 219 221 

 
The y vector and X matrix are: 
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The first column of the X matrix consists of the number 1 to facilitate calculating the 
intercept b0. Including y and X in the model gives: 
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The X'X, X'y and (X'X)–1 matrices are: 
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The b vector is: 

b = (X'X)–1X'y 














 −
=








=







−
=
















−

−
=

xx

xy

SS
SS

xby

b
b

..

.. 1

1

0

53.7
05.974

859359
3959

 
029410382356
3823561371385

 



138  Biostatistics for Animal Science 

 

Recall that:  
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The estimated values are: 
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s2 = 115.826 is the residual mean square. The estimated variance of b is: 









−

−
==

029410382356
3823561371385

 115.826 )(  -12

..

..
s XX'(b)s2









−

−
=

4073242739
2427399160434
..
..

 

For example, the estimated variance of b1 is: 

s2(b1) = 3.407 

The tests of hypothesis are conducted as was previously shown in the scalar presentation. 
 
 
7.13.3 Maximum Likelihood Estimation 

Under the assumption of normality of the dependent variable, y has a multivariate normal 
distribution y ~ N(Xβ, σ2I). The likelihood function is a function with parameters β and σ2 
for a given set of n observations of dependent and independent variables: 
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The log likelihood is: 
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A set of maximum likelihood estimators can be estimated that will maximize the log 
likelihood function. The maximum of the function can be determined by taking the partial 
derivatives of the log likelihood function with respect to the parameters. These derivatives 
are equated to zero in order to find the estimators b and s2

ML. The following normal 
equations are obtained: 

(X'X)b = X'y 

Solving for b gives: 
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b = (X'X)–1X'y 

A maximum likelihood estimator of the variance is given by: 

( ) ( )XbyXby −−= '12

n
sML  

Note again that the maximum likelihood estimator of the variance is not unbiased. An 
unbiased estimator is obtained when the maximum likelihood estimator is multiplied by 
n / (n – 2), that is:  

22
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n

nMSs
−

==  

7.14 SAS Example for Simple Linear Regression 

The SAS program for the example of weights and heart girth of cows is as follows: 
 
SAS program: 
 
DATA cows; 
INPUT weight h_girth; 
DATALINES; 
641 214 
633 215 
651 216 
666 217 
688 219 
680 221 
; 
PROC REG; 
MODEL weight = h_girth / ; 
RUN; 
 
*or; 
 
PROC GLM; 
MODEL weight =h_girth / ; 
RUN; 

 
Explanation: Either the GLM or REG procedures can be used. The MODEL statement,  
weight = h_girth denotes that the dependent variable is weight, and the independent variable 
is h_girth.  
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SAS output: 
 
                 Analysis of Variance 
 
                   Sum of         Mean 
Source     DF      Squares       Square      F Value    Prob>F 
Model      1   1927.52941      1927.52941     16.642    0.0151 
Error      4    463.30392      115.82598 
C Total    5   2390.83333 
 
    Root MSE      10.76225     R-square       0.8062 
    Dep Mean     659.83333     Adj R-sq       0.7578 
    C.V.           1.63106 
 
                        Parameter Estimates 
 
               Parameter      Standard    T for H0: 
Variable  DF   Estimate         Error     Parameter=0    Prob > |T| 
INTERCEP   1  -974.049020  400.54323178        -2.432        0.0718 
H_GIRTH    1     7.529412    1.84571029         4.079        0.0151 

 
Explanation: The first table is an ANOVA table for the dependent variable weight. The 
sources of variability are Model, Error and Corrected Total. In the table are listed degrees 
of freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P value 
(Prob>F). It can be seen that F = 16.642 with a P value = 0.0151. This means that the 
sample regression coefficient is significantly different than zero. Below the ANOVA table, 
the standard deviation of the regression model (Root MSE) = 10.76225 and the coefficient 
of determination (R-square) = 0.8062 are given. Under the title Parameter Estimates, the 
parameter estimates are presented with standard errors and corresponding t tests indicating 
whether the estimates are significantly different than zero. Here, b0 (INTERCEP) = 
-974.046020 and b1 (H_GIRTH) = 7.529412. The Standard errors are 400.54323178 and 
1.84571029 for b0 and b1, respectively. The calculated t statistic is 4.079, with the P value 
(Prob > |T|) = 0.0151. This confirms that b1 is significantly different to zero. 

7.15 Power of Tests 

The power of the linear regression based on a sample can be calculated by using either t or 
F central and noncentral distributions. Recall that the null and alternative hypotheses are H0: 
β1 = 0 and H1: β1 ≠ 0. The power can be calculated by stating the alternative hypothesis as 
H1: β1 = b1, where b1 is the estimate from a sample. The t distribution is used in the 
following way. If H0 holds, the test statistic t has a central t distribution with n – 2 degrees 
of freedom. However, if H1 holds, the t statistic has a noncentral t distribution with a 

noncentrality parameter xxSS
s
b1=λ  and n – 2 degrees of freedom. Here, b1 is the 

estimate of the regression coefficient, RESMSs =  is the estimated standard deviation of 



Chapter 7  Simple Linear Regression  141 

 

the regression model, MSRES is the residual mean square and SSxx is the sum of squares for 
the independent variable x. For the two-sided test the power is a probability: 

Power = 1 – β = P[t < –tα/2 = tβ1] + P[t > tα/2 = tβ2]  

using the noncentral t distribution for H1. Here, tα/2 is the critical value with the α level of 
significance, and 1 and n – 2 degrees of freedom. The power for the linear regression with 
20 degrees of freedom is shown in Figure 7.12. 
 

 
Figure 7.12  The significance and power of the two-sided t test for linear regression. The 
t statistic has a central t distribution if H0 is true, and a noncentral distribution if H1 is true. 
The distributions with 20 degrees of freedom are shown. The critical values are –tα/2. and 
tα/2. The sum of areas under the H0 curve on the left of –tα/2 and on the right of tα/2 is the 
level of significance (α). The sum of areas under the H1 curve on the left of –tα/2 and on 
the right of tα/2 is the power (1 – β). The area under the H1 curve between –tα/2 and tα/2 is 
the type II error (β) 

 
The F distribution is used to compute power as follows. If H0 holds, then the test statistic F 
has a central F distribution with 1 and n – 2 degrees of freedom. If H1 is true the F statistic 

has a noncentral F distribution with the noncentrality parameter 
RES

REG

MS
SS

=λ , and 1 and n - 2 

degrees of freedom. The power of test is a probability: 

Power = 1 – β = P[F > Fα,1,(n-2) = Fβ] 

using the noncentral F distribution for H1. Here, Fα,1,n-2 is the critical value with the α level 
of significance, and 1 and n – 2 degrees of freedom. 
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Figure 7.13  Significance and power of the F test for regression. The F statistic has a 
central F distribution if H0 is true, and a noncentral F distribution if H1 is true. The 
distributions with 1 and 20 degrees of freedom are shown. The critical value is Fα,1,20. The 
area under the H0 curve on the right of the Fα,1,20 is the significance level (α). The area 
under the H1 curve on the right of the Fα,1,20  is the power (1 – β). The area under the H1 
curve on the left of the Fα,1,20 is the type II error (β) 

 
 
7.15.1 SAS Examples for Calculating the Power of Test 

Example: Calculate the power of test for the example of weights and heart girths of cows 
by using the t distribution. The following were previously calculated: b1 = 7.53, the variance 
s2 = MSRES = 115.826, SSxx = 34 and degrees of freedom df = 4.  
The calculated value of the t statistic was: 

079.40
2

1 =
−

=
xxSSs

bt  

The calculated t = 4.079 is more extreme than the critical value (2.776), thus the estimate of 
the regression slope b1= 7.53 is significantly different to zero and it was concluded that 
regression in the population exists. 
 
For the two-sided test the power is: 

Power = 1 – β = P[t > –tα/2 = tβ1] + 1 – P[t > tα/2 = tβ2]  

using a noncentral t distribution for H1 with the noncentrality parameter 

 079.434
826.115

53.71 === xx
RES

SS
MS

b
λ  and four degrees of freedom. The power is: 

Power = 1 – β =  P[t > –2.776] + P[t > 2.776] = 0.000 + 0.856 = 0.856 

Power can be calculated by using SAS:  
 

H0, (λ = 0) 

H1, (λ = 5) 
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DATA a; 
alpha=0.05; 
n=6; 
b=7.52941; 
msres=115.82598; 
ssxx=34; 
df=n-2; 
lambda=abs(b)/sqrt(msres/ssxx); 
tcrit_low=TINV(alpha/2,df);   
tcrit_up=TINV(1-alpha/2,df);   
power=CDF('t',tcrit_low,df,lambda)+ 1-CDF('t',tcrit_up,df,lambda); 
PROC PRINT; 
RUN; 
 

Explanation: First, it is defined: alpha = significance level, n = sample size, b = estimated 
regression coefficient, msres = residual (error) mean square (the estimated variance), ssxx = 
sum of squares for x, df = degrees of freedom. The noncentrality parameter (lambda) and 
critical values (tcrit_low and tcrit_up for a two-sided test) are calculated. The critical value 
is computed by using the TINV function, which must have as input cumulative values of 
percentiles (α/2 = 0.025 and 1 – α/2 = 0.975) and degrees of freedom df. The power is 
calculated with the CDF function. This is a cumulative function of the t distribution, which 
needs the critical value, degrees of freedom and the noncentrality parameter lambda to be 
defined. Instead of CDF('t',tcrit,df,lambda) the function PROBT(tcrit,df,lambda) can also be 
used. The PRINT procedure gives the following SAS output:  
 
Alpha  n    b    msres   ssxx df lambda  tcrit_low  tcrit_up  power 
 
0.05   6  7.529  115.826  34  4  4.079   -2.77645    2.77645  0.856 

 
The power is 0.85615. 
 
 
Example: Calculate the power of test for the example of weights and heart girths of cows 
by using the F distribution. The following were previously calculated: the regression sum of 
squares SSREG = 1927.529 and the variance s2 = MSRES = 115.826. The regression and 
residual degrees of freedom are 1 and 4, respectively. The calculated value of the F statistic 
was: 

642.16
826.115
529.1927

===
RES

REG

MS
MSF  

The critical value for α = 0.05 and degrees of freedom 1 and 4 is F0.05,1,4 = 7.71. Since the 
calculated F = 16.642 is greater than the critical value, H0 is rejected. 
 
The power of test is calculated using the critical value F0.05,1,4 = 7.71, and the noncentral F 

distribution for H1 with the noncentrality parameter 642.16
826.115
529.1927

===
RES

REG

MS
SSλ  and 1 

and 4 degrees of freedom. The power is: 

Power = 1 – β = P[F > 7.71] = 0.856 
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the same value as by using the t distribution. 
 
The power can be calculated by using SAS:  
 
DATA a; 
alpha=0.05; 
n=6; 
ssreg=1927.52941; 
msres=115.82598; 
df=n-2; 
lambda=ssreg/mse;  
Fcrit=FINV(1-alpha,1,df);   
power=1-PROBF(Fcrit,1,df,lambda); 
PROC PRINT; 
RUN; 

 
Explanation: First, it is defined: alpha = significance level, n = sample size, ssreg = 
regression sum of squares, msres = residual mean square, df = degrees of freedom. Then, 
the noncentrality parameter (lambda) and critical value (Fcrit) are calculated. The critical 
value is computed with FINV function, which must have cumulative values of percentiles 
(1 – α = 0.95) and degrees of freedom 1 and df. The power is calculated with the PROBF. 
This is a cumulative function of the F distribution which needs the critical value, degrees of 
freedom and the noncentrality parameter lambda to be defined. Instead of 
PROBF(Fcrit,1,df,lambda) the CDF('F',Fcrit,1,df,lambda) function can also be used. The 
PRINT procedure gives the following SAS output: 
 
alpha   n   ssreg      msres   df    lambda    Fcrit     power 
 
0.05    6   1927.53   115.826   4    16.6416   7.70865   0.856 

 
The power is 0.856. 
 

Exercises  

7.1. Estimate the linear regression relating the influence of hen weights (x) on feed intake 
(y) in a year:  
 

x 2.3 2.6 2.4 2.2 2.8 2.3 2.6 2.6 2.4 2.5 
y 43 46 45 46 50 46 48 49 46 47 

 
Test the null hypothesis that regression does not exist. Construct a confidence interval of the 
regression coefficient. Compute the coefficient of determination. Explain the results. 
 
7.2. The aim of this study was to test effects of weight at slaughter on back-fat thickness. 
Eight pigs of the Poland China breed were measured. The measurements are shown in the 
following table:  
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Slaughter weight (kg)  100 130 140 110 105 95 130 120 
Back fat (mm) 42 38 53 34 35 31 45 43 

 
Test the H0 that regression does not exist. Construct a confidence interval for the regression 
coefficient. Compute the coefficient of determination. Explain the results. 
 
7.3. In the period from 1990 to 2001 on a horse farm there were the following numbers of 
horses:  
 
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 
Number of 
horses 110 110 105 104 90 95 92 90 88 85 78 80 

 
a) Describe the changes of the number of horses with a regression line.  
b) Show the true and estimated numbers in a graph  
c) How many horses would be expected in the year 2002 if a linear trend is assumed? 
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Chapter 8  
 
Correlation 

The coefficient of correlation measures the strength of the linear relationship between two 
variables. Recall that the main goal of regression analysis is to determine the functional 
dependency of the dependent variable y on the independent variable x. The roles of both 
variables x and y are clearly defined as dependent and independent. The values of y are 
expressed as a function of the values of x. The correlation is used when there is interest in 
determining the degree of association among variables, but when they cannot be easily 
defined as dependent or independent. For example, we may wish to determine the 
relationship between weight and height, but do not consider one to be dependent on the 
other, perhaps both are dependent on a third factor. The coefficient of correlation (ρ) is 
defined:  

22
yx

xy

σσ

σ
ρ =  

where: 
σ2

y = variance of y 
σ2

x = variance of x  
σxy = covariance between x and y  

 
Variables x and y are assumed to be random normal variables jointly distributed with a 
bivariate normal distribution. Recall that the covariance is a measure of joint variability of 
two random variables. It is an absolute measure of association. If two variables are not 
associated then their covariance is equal to zero. The coefficient of correlation is a relative 
measure of association between two variables, and is equal to the covariance of the 
standardized variables x and y: 










 −−
=

x

x

y

y xy
Cov

σ
µ

σ
µ

ρ ,  

where µy and µx are the means of y and x, respectively. 
 

Values of the coefficient of correlation range between –1 and 1, inclusively 
( 11 ≤≤− ρ ). For ρ > 0, the two variables have a positive correlation, and for ρ < 0, the two 
variables have a negative correlation. The positive correlation means that as values of one 
variable increase, increasing values of the other variable are observed. A negative 
correlation means that as values of one variable increase, decreasing values of the other 
variable are observed. The value ρ = 1 or ρ = –1 indicates an ideal or perfect linear 
relationship, and ρ = 0 means that there is no linear association. The sign of the coefficient 
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of correlation, ρ, is the same as that of the coefficient of linear regression β1, and the 
numerical connection between those two coefficients can be seen from the following:  

21 
x

xy

σ
σ

β =  

Now: 
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xy
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


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


==  

In Figure 8.1 it is apparent that there is a positive correlation between x and y in a), and a 
negative correlation in b). The lower figures illustrate two cases when, by definition, there 
is no correlation; there is no clear association between x and y in c), and there is an 
association, but it is not linear in d).  

 
Figure 8.1  a) positive correlation, b) negative correlation, c) no association, and d) an 
association but it is not linear 

8.1 Estimation of the Coefficient of Correlation and Tests of 
Hypotheses 

The coefficient of correlation is estimated from a random sample by a sample coefficient of 
correlation (r):  

 x

x

  x 
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y 
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yyxx

xy

SSSS

SS
r =  

 
where: 

( ) ( )yyxxSS ii ixy −−= ∑   = sum of products of y and x 

( )2∑ −=
i ixx xxSS  = sum of squares of x 

( )2∑ −=
i iyy yySS  = sum of squares of y 

n = sample size 
y  and x  = arithmetic means of y and x 

 
Values for r also range between –1 and 1, inclusively. The sample coefficient of correlation 
is equal to the mean product of the standardized values of variables from the samples. This 
is an estimator of the covariance of the standardized values of x and y in the population. 
Recall that the mean product is: 
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Let sx and sy denote the standard deviations of x and y calculated from a sample. Then the 

mean product of the standardized variables, 
x

i

s
xx −  and 

y

i
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The last term can be written:  

r
SSSS

SS

yyxx

xy =  

which is the sample coefficient of correlation.  
 

To test the significance of a correlation in a sample, the null and alternative hypotheses 
about the parameter ρ are: 

H0: ρ = 0  
H1: ρ ≠ 0 

 
The null hypothesis states that the coefficient of correlation in the population is not different 
from zero, that is, there is no linear association between variables in the population. The 
alternative hypothesis states that the correlation in the population differs from zero. In 
hypothesis testing, a t-distribution can be used, because it can be shown that the t statistic:  

rs
rt =  
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has a t-distribution with (n – 2) degrees of freedom assuming the following:  
1) variables x and y have a joint bivariate normal distribution 
2) the hypothesis H0: ρ = 0 is true.  

Here, 
2

1 2

−
−

=
n

rsr  is the standard error of the coefficient of correlation. Further:  

   0

2
1 2

−
−

−
=

n
r

rt  

or simplified: 

   
1

2
2r

nrt
−

−
=  

 
 
Example: Is there a linear association between weight and heart girth in this herd of cows? 
Weight was measured in kg and heart girth in cm on 10 cows: 
 

Cow 1 2 3 4 5 6 7 8 9 10 
Weight (y): 641 620 633 651 640 666 650 688 680 670 
Heart girth (x): 205 212 213 216 216 217 218 219 221 226 

 
The computed sums of squares and sum of products are: SSxx = 284.1, SSxy = 738.3, 
SSyy = 4218.9. The sample coefficient of correlation is: 

67.0
)9.4218)(1.284(

3.738
==

yyxx

xy

SSSS

SS
r   

The calculated value of the t statistic is: 

58.2
67.01

21067.0

1

2
22

=
−

−
=

−

−
=

r

nrt  

The critical value with 5% significance level and 8 degrees of freedom is: 

tα/2,8 = t0.25,8 = 2.31 

The calculated t = 2.58 is more extreme than 2.31, so H0 is rejected. There is linear 
association between weight and heart girth in the population.  

8.2 Numerical Relationship between the Sample Coefficient of 
Correlation and the Coefficient of Determination 

We have seen earlier that the symbol of the coefficient of determination is R2. The reason 
for that is that there is a numerical relationship between R2 and the sample coefficient of 
correlation r: 
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r2 = R2  

This can be shown by the following: 

2
2

2 R
SS
SS

SSSS
SS

r
TOT

REG

yyxx

xy ===  

SSREG and SSTOT are the regression sums of squares and the total sum of squares, 
respectively. Note the conceptual difference between R2 and r; R2 determines the 
correctness of a linear model and r denotes linear association between variables. 
 
 
8.2.1 SAS Example for Correlation 

The SAS program for the example of weights and heart girths of cows is as follows: 
 
SAS program: 
 
DATA cows; 
INPUT weight h_girth @@; 
DATALINES; 
641 205   620 212   633 213   651 216   640 216 
666 217   650 218   688 219   680 221   670 226 
; 
PROC CORR; 
VAR weight h_girth; 
RUN; 

 
Explanation: The statement VAR defines the variables between which the correlation is 
computed. 
 
SAS output: 
 
                Simple Statistics 
 
Variable    N   Mean     Std Dev    Sum   Minimum    Maximum 
weight     10  653.900   21.651    6539   620.000   688.000 
h_girth    10  216.300    5.618    2163   205.000   226.000 
 
           Pearson Correlation Coefficients, N = 10 
                  Prob > |r| under H0: Rho=0 
 
                         weight       h_girth 
           weight       1.00000       0.67437 
                                      0.0325 
           h_girth      0.67437       1.00000 
                        0.0325 
 

Explanation: First, the descriptive statistics are given. Next, the sample coefficient of 
correlation and its P value are shown (Pearson Correlation Coefficients and Prob > |r| 
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under H0: Rho=0). The sample coefficient of correlation is 0.67437. The P value is 0.0325, 
which is less than 0.05. The conclusion is that correlation exists in the population. 

8.3 Rank Correlation 

In cases when variables are not normally distributed, but their values can be ranked, the 
nonparametric coefficient of rank correlation can be used as a measure of association. The 
rules are as follows. For each variable, values are sorted from lowest to highest and then 
ranks are assigned to them. For example, assume heights of four cows: 132, 130, 133 and 
135. Assigned ranks are: 2, 1, 3 and 4. If there is a tie, then the average of their ranks is 
assigned. For heights 132, 130, 133, 130 and 130, assigned ranks are: 4, 2, 5, 2 and 2. Once 
the ranks are determined, the formula for the sample rank coefficient of correlation is the 
same as before: 
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but now values xi and yi are the ranks of observation i for the respective variables.  
 
 
Example: Is there a relationship between gene expression (RNA levels) and feed intake of 
lambs? The feed intake is kilograms consumed over a one week feeding period. The RNA 
measures expression of the leptin receptor gene. 
 

Lamb 1 2 3 4 5 6 7 8 9 10 11 12 

RNA 195 201 295 301 400 500 600 720 1020 3100 4100 6100 

Rank  1 2 3 4 5 6 7 8 9 10 11 12 

Feed 
intake 7.9 8.3 9.1 7.4 8.6 7.5 10.

7 9.7 10.4 9.5 9.0 11.3 

Rank  3 4 7 1 5 2 11 9 10 8 6 12 

 
Using ranks as values we compute the following sums of squares and sum of products: 

SSRNA = 143 
SSFeedintake = 143 
SSRNA_Feedintake = 95 

Note that the sum of squares for both RNA and Feed intake are the same as rank values go 
from 1 to 12. Using the usual formula the correlation is: 

664.0
)143)(143(

95_ ==
FeedIntakeRNA

FeedIntakeRNA

SSSS
SS

r  
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8.3.1 SAS Example for Rank Correlation 

The SAS program for the example of gene expression and feed intake of lambs is as 
follows: 
 
SAS program: 
 
DATA lambs; 
INPUT rna intake @@; 
DATALINES; 
  195  7.9     201  8.3     295  9.1      301  7.4  
  400  8.6     500  7.5     600 10.7      720  9.7  
 1020 10.4    3100  9.5    4100  9.0     6100 11.3 
; 
PROC CORR DATA = lambs SPEARMAN; 
VAR rna intake; 
RUN; 

 
Explanation: The statement VAR defines the variables between which the correlation is 
computed. The SPEARMAN option computes the rank correlation. 
 
SAS output: 
 
                  Simple Statistics 
 
Variable   N       Mean   Std Dev     Median     Minimum   Maximum 
rna        12      1461     1921     550.00000  195.00000    6100 
intake     12    9.11667   1.25758    9.05000    7.40000   11.30000 
 
     Spearman Correlation Coefficients, N = 12 
                      Prob > |r| under H0: Rho=0 
 
                                   rna        intake 
                  rna          1.00000       0.66434 
                                              0.0185 
                  intake       0.66434       1.00000 
                                0.0185 
 

Explanation: First, the descriptive statistics are given. Next, the sample coefficient of rank 
correlation and its P value are shown (Spearman Correlation Coefficients and Prob > |r| 
under H0: Rho=0). The sample coefficient of correlation is 0.66434. The P value is 0.0185, 
which is less than 0.05. The conclusion is that correlation exists in the population. 
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Exercises  

8.1. Calculate the sample coefficient of correlation between number of ovulated follicles 
and number of eggs laid by pheasants. Data of 11 pheasants were collected: 
 

Number of eggs 39 29 46 28 31 25 49 57 51 21 42 
Number of follicles 37 34 52 26 32 25 55 65 4 25 45 

 
Test the null hypothesis that correlation in the population is not different from zero. 
 
8.2. An estimated coefficient of correlation is r = 0.65. Sample size is n = 15. Is this value 
significantly different from zero at the 5% level?  
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Multiple Linear Regression 

A simple linear regression explains the linear cause-consequence relationship between one 
independent variable x and a dependent variable y. Often, it is necessary to analyze effects 
of two or more independent variables on a dependent variable. For example, weight gain 
may be influenced by the protein level in feed, the amount of feed consumed, and the 
environmental temperature, etc. The variability of a dependent variable y can be explained 
by a function of several independent variables, x1, x2,..., xp. A regression that has two or 
more independent variables is called a multiple regression.  
Goals of multiple regression analysis can be: 
1. To find a model (function) that best describes the dependent with the independent 

variables, that is, to estimate parameters of the model, 
2. To predict values of the dependent variable based on new measurements of the 

independent variables, 
3. To analyze the importance of particular independent variables, thus, to analyze whether 

all or just some independent variables are important in the model. This involves building 
an optimal model. 

 
The multiple linear regression model is: 

y = β0 + β1x1 + β2x2 + ... + βp-1xp-1 + ε  

where:  
y = dependent variable 
x1, x2,..., xp-1 = independent variables 
β0 , β1 , β2 ,..., βp-1 = regression parameters 
ε = random error 

 
Data used in multiple regression have the general form: 
 

y x1 x2 ... xp-1 

y1 x11 x22 ... x(p-1)1 

y2 x12 x22 ... x(p-1)2 

…                 
yn x1n x2n ... x(p-1)n 

 
Each observation yi can be presented as:  

yi = β0 + β1x1i + β2x2i + ... + βp-1x(p-1)i + εi i = 1,..., n 
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The assumptions of the model are: 
1)   E(εi) = 0 
2)   Var(εi) = σ2, the variance is constant 
3)   Cov (εi,εi’) = 0,   i ≠ i’, different errors are independent 
4) Usually, it is assumed that errors have a normal distribution  
 
The following model properties follow directly from these model assumptions:  
1)   E(yi) = β0 + β1xi + β2x2i + ... + βp-1x(p-1)i  
2)   Var(yi) = Var(εi) = σ2 
3)   Cov(yi,yi’) = 0,   i ≠ i’  
 

9.1 Two Independent Variables 

Multiple linear regression will be explained by using a model with two independent 
variables. Estimating a model with three or more independent variables and testing 
hypotheses follows the same logic. The model for a linear regression with two independent 
variables and n observations is: 

yi = β0 + β1x1i + β2x2i + εi   i = 1,..., n 

where: 
yi = observation i of dependent variable y  
x1i and x2i  = observations i of independent variables x1 and x2  
β0, β1, and  β2 = regression parameters 
εi = random error  

The regression model in matrix notation is: 

y = Xβ + ε 

where: 
y = the vector of observations of a dependent variable 
β = the vector of parameters 
X = the matrix of observations of independent variables 
ε = the vector of random errors with the mean E(ε) = 0 and variance Var(ε) = σ2I 

The matrices and vectors are defined as: 
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9.1.1 Estimation of Parameters  

A vector of parameters β is estimated by a vector b from a sample of data assumed to be 
randomly chosen from a population. The estimation model for the sample is: 

Xby =ˆ  

where 
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b  = the vector of estimators. 

The vector of residuals is the difference between values from the y vector and 
corresponding estimated values from the ŷ  vector: 
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Using either least squares or maximum likelihood estimation, in the same way as shown for 
simple linear regression, the following normal equations are obtained: 

X'Xb = X'y 

Solving for b gives: 

b = (X'X)–1X'y 

The elements of the X'X and X'y matrices are corresponding sums, sums of squares and 
sums of products: 
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The vector of estimated values of a dependent variable can be expressed by using X and y: 

( ) XyXXXXby 1−== 'ˆ  

The variance σ2 is estimated by: 
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where: 
SSRES = e'e = the residual sum of squares 
(n – p) = the degrees of freedom 
p = the number of parameters in the model, for two independent variables p = 3  
MSRES = the residual mean square 

 
The square root of the variance estimator is the standard deviation of the regression model: 

2ss =  

 
 
Example: Estimate the regression of weight on heart girth and height, and its error 
variance, from the data of six young bulls given in the following table:  
 

Bull: 1 2 3 4 5 6 7 
Weight, kg (y): 480 450 480 500 520 510 500 
Heart girth, cm (x1): 175 177 178 175 186 183 185 
Height, cm (x2): 128 122 124 128 131 130 124 

 
The y vector and X matrix are: 
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Hence, the estimated regression is: 

y = –495.014 + 2.257x1 + 4.581x2  

The vector of estimated values is: 
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The residual vector is: 
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The residual sum of squares is: 

SSRES = e'e = 558.059 



Chapter 9  Multiple Linear Regression  159 

 

The residual mean square, which is an estimate of the error variance, is: 

515.139
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9.1.2 Student t test in Testing Hypotheses 

The expectation and variance of estimators are: 

E(b) = β       and        Var(b) = σ2(X'X)–1  

If the variance σ2 is unknown, it can be estimated from a sample. Then the variance of the b 
vector equals: 

s2(b) = s2(X'X)–1  

A test of the null hypothesis H0: βi = 0, that is, the test that b1 or b2 are significantly different 
to zero, can be done by using a t test. The test statistic is:  

)( i

i
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bt =  

where )( )( 2
ii bsbs = . The critical value of the t distribution is determined by the level of 

significance α and degrees of freedom (n – p), where p is the number of parameters. 

 
 
Example: Recall the example of weight, heart girth and height of young bulls. The 
following was previously calculated: the estimated variance MSRES = s2 = 139.515, the 
parameter estimates b0 = -495.014, b1 = 2.257 and b2 = 4.581, for the intercept, heart girth 
and height, respectively. What are the variances of the estimated parameters? Test H0 that 
changes of height and heart girth do not influence changes in weight. 
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Thus, the variance estimates for b1 and b2 are s2(b1) = 1.153 and s2(b2) = 2.207, respectively. 
The t statistics are: 
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The calculated t for b1 is: 

10.2
153.1

257.2
==t  

The calculated t for b2 is: 

08.3
207.2

4.581
==t  

For the significance level α = 0.05, the critical value of the t distribution is t0.025,4 = 2.776 
(See Appendix B: Critical values of student t  distribution). Only the t for b2 is greater than 
the critical value, H0: β2 = 0 is rejected at the 5% level of significance.  
 
 
9.1.3 Partitioning Total Variability and Tests of Hypotheses 

As for the simple regression model, the total sum of squares can be partitioned into 
regression and residual sums of squares:  

SSTOT = SSREG + SSRES 

The regression sum of squares is: ( )2ˆ)ˆ()'ˆ( ∑ −=−−=
i iREG yySS yyyy  

The residual sum of squares is: ( )2ˆ)ˆ()'ˆ( ∑ −=−−=
i iiRES yySS yyyy  

The total sum of squares is: ( )2)()'( ∑ −=−−=
i iTOT yySS yyyy  

 
or shortly, using the computed vector b: 

2'' ynSSREG −= yXb  

yXbyy ''' −=RESSS  

2' ynSSTOT −= yy  
 
Degrees of freedom for the total, regression and residual sums of squares are: 

n – 1      =       (p – 1)         +      (n – p) 

Here, n is the number of observations and p is the number of parameters. 
 

Mean squares are obtained by dividing the sums of squares with their corresponding 
degrees of freedom: 

Regression mean square: 
1−

=
p

SSMS REG
REG  

Residual mean square: 
pn

SSMS RES
RES −
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The null and alternative hypotheses are: 

H0: β1 = β2 = 0 
H1: at least one βi ≠ 0, i = 1 and 2  

 
If H0 holds then the statistic:  

RES

REG

MS
MSF =  

has an F distribution with (p – 1) and (n – p) degrees of freedom. For the α level of 
significance H0 is rejected if the calculated F is greater than the critical value Fα,p-1,n-p. 
 
The ANOVA table is: 
 

Source  SS df MS = SS / df  F 
Regression SSREG p – 1 MSREG = SSREG / (p – 1) F = MSREG / MSRES 
Residual  SSRES n – p MSRES = SSRES / (n – p)  
Total SSTOT n – 1   

 
The coefficient of multiple determination is: 

TOT

RES
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REG

SS
SS

SS
SSR −== 12  0 ≤ R2 ≤ 1 

Note that extension of the model to more than two independent variables is straight forward 
and follows the same logic as for the model with two independent variables. Further, it is 
possible to define interaction between independent variables. 
 
 
Example: For the example of weights, heart girths and heights of young bulls, test the null 
hypothesis H0: β1 = β2 = 0 using an F distribution. The following were previously defined 
and computed: 
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The sums of squares are: 
2'' ynSSREG −= yXb  = 
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SSRES = SSTOT – SSREG = 3285.714 – 2727.655 = 558.059 
 
The ANOVA table: 
 

Source  SS df MS F 
Regression 2727.655 2 1363.828 9.78 
Residual  558.059 4 139.515  
Total 3285.714 6   

 
The critical value of the F distribution for α = 0.05 and 2 and 4 degrees of freedom is 
F0.05,2,4 = 6.94 (See Appendix B: Critical values of the F distribution). Since the calculated 
F = 9.78 is greater than the critical value, H0 is rejected at the 5% level of significance. 
 
The coefficient of determination is: 

83.0
714.3285
655.27272 ==R   

 

9.2 Partial and Sequential Sums of Squares 

Recall that the total sum of squares can be partitioned into regression and residual sums of 
squares. The regression sum of squares can further be partitioned into sums of squares 
corresponding to parameters in the model. By partitioning the sums of squares, the 
importance of adding or dropping particular parameters from the model can be tested. For 
example, consider a model with three independent variables and four parameters: 
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y = β0 + β1x1 + β2x2 + β3x3 + ε  

Now, assume that this model contains a maximum number of parameters. This model can be 
called a full model. Any model with fewer parameters than the full model is called a 
reduced model. All possible reduced models derived from the full model with four 
parameters are: 

y = β0 + β1x1 + β2x2 + ε  
y = β0 + β1x1 + β3x3 + ε  
y = β0 + β2x2 + β3x3 + ε  
y = β0 + β1x1 + ε  
y = β0 + β2x2 + ε  
y = β0 + β3x3 + ε  
y = β0 + ε  

 
Let SSREG(β0,β1,β2,β3) denote the regression sum of squares when all parameters are in the 
model. Analogously, SSREG(β0,β1,β2), SSREG(β0,β2,β3), SSREG(β0,β1,β3), SSREG(β0,β1), 
SSREG(β0,β2), SSREG(β0,β3) and SSREG(β0) are the regression sums of squares for reduced 
models with corresponding parameters. A decrease of the number of parameters in a model 
always yields a decrease in the regression sum of squares and a numerically equal increase 
in the residual sum of squares. Similarly, adding new parameters to a model gives an 
increase in the regression sum of squares and a numerically equal decrease in the residual 
sum of squares. This difference in sums of squares is often called extra sums of squares. Let 
R(*|#) denote the extra sum of squares when the parameters * are added to a model already 
having parameters #, or analogously, the parameters * are dropped from the model leaving 
parameters #. For example, R(β2|β0,β1) depicts the increase in SSREG when β2 is included in 
the model already having β0 and β1: 

R(β2|β0,β1) = SSREG(β0,β1,β2) – SSREG(β0,β1) 

Also, R(β2|β0,β1) equals the decrease of the residual sum of squares when adding β2 to a 
model already having β1and β0: 

R(β2|β0,β1) = SSRES(β0,β1) – SSRES(β0,β1,β2) 

Technically, the model with β0, β1 and β2 can be considered a full model, and the model 
with β0 and β1 as a reduced model. 

According to the way they are calculated, there exist two extra sums of squares, the 
sequential and partial sums of squares, also called Type I and Type II sums of squares, 
respectively. Sequential extra sums of squares denote an increase of the regression sum of 
squares when parameters are added one by one in the model. Obviously, the sequence of 
parameters is important. For the example model with four parameters, and the sequence of 
parameters β0, β1, β2, and β3, the following sequential sums of squares can be written: 

R(β1|β0) = SSREG(β0,β1) – SSREG(β0)             (Note that SSREG(β0) = 0) 
R(β2|β0,β1) = SSREG(β0,β1,β2) – SSREG(β0,β1) 
R(β3|β0,β1,β2) = SSREG(β0,β1,β2,β3) – SSREG(β0,β1,β2) 

 
The regression sum of squares for the full model with four parameters is the sum of all 
possible sequential sums of squares: 

SSREG(β0,β1,β2,β3) = R(β1|β0) + R(β2|β0,β1) + R(β3|β0,β1,β2) 
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The partial sums of squares denote an increase of regression sums of squares when a 
particular parameter is added to the model, and all other possible parameters are already in 
the model. For the current example there are three partial sums of squares: 

R(β1|β0,β2,β3) = SSREG(β0,β1,β2,β3) – SSREG(β0,β2,β3) 
R(β2|β0,β1,β3) = SSREG(β0,β1,β2,β3) – SSREG(β0,β1,β3) 
R(β3|β0,β1,β2) = SSREG(β0,β1,β2,β3) – SSREG(β0,β1,β2) 

 
Note that the partial sums of squares do not sum to anything meaningful.  
 
Sequential sums of squares are applicable when variation of one independent variable 
should be removed before testing the effect of the independent variable of primary interest. 
In other words, the values of the dependent variable are adjusted for the first independent 
variable. The variable used in adjustment is usually preexisting in an experiment. Thus, the 
order in which variables enter the model is important. For example, consider an experiment 
in which weaning weight of lambs is the dependent variable and inbreeding coefficient is 
the independent variable of primary interest. Lambs are weaned on a fixed date so vary in 
age on the day of weaning. Age at weaning is unaffected by inbreeding coefficient and the 
effect of age at weaning should be removed before examining the effect of inbreeding. Age 
at weaning serves only as an adjustment of weaning weight in order to improve the 
precision of testing the effect of inbreeding.  

Partial sums of squares are used when all variables are equally important in explaining 
the dependent variable and the interest is in testing and estimating regression parameters for 
all independent variables in the model. For example, weight of bulls is fitted to a model 
including the independent variables height and heart girth, both variables must be tested and 
the order is not important. 

Partial and sequential sums of squares can be used to test the suitability of adding 
particular parameters to a model. If the extra sum of squares is large enough, the added 
parameters account for significant variation in the dependent variable. The test is conducted 
with an F test by dividing the mean extra sum of squares by the residual mean square for the 
full model. For example, to test whether β3 and β4 are needed in a full model including β0, 
β1, β2 β3 and β4: 
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An analogous test can be used for any set of parameters in the model. The general form of 
the test of including some set of parameters in the model is: 
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where: 
pREDUCED = the number of parameters in the reduced model 
pFULL = the number of parameter in the full model 
n = number of observations on the dependent variable  
SSRES_FULL / (n – pFULL) = MSRES_FULL = the residual mean square for the full model 
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Example: For the example of weights, heart girths and heights of six young bulls, the 
sequential and partial sums of squares will be calculated. Recall that β1 and β2 are 
parameters explaining the influence of the independent variables heart girth and height, 
respectively, on the dependent variable weight. The following sums of squares for the full 
model have already been computed: 
 

SSTOT = 3285.714 
SSREG_FULL = 2727.655  
SSRES_FULL = 558.059 
MSRES_FULL = 139.515 

 
The sequential sums of squares are: 

R(β1|β0) = SSREG(β0,β1) = 1400.983 
R(β2|β0,β1) = SSREG(β0,β1,β2) – SSREG(β0,β1) = 2727.655 – 1400.983 = 1326.672 

 
The same values are obtained when the residual sums of squares are used: 

R(β1|β0) = SSRES(β0) – SSRES(β0,β1) = 3285.714 – 1884.731 = 1400.983 
R(β2|β0,β1) = SSRES(β0,β1) – SSRES(β0,β1,β2) = 1884.731 – 558.059 = 1326.672 

 
The partial sums of squares are: 

R(β1|β0,β2) = SSREG(β0,β1,β2) – SSREG(β0,β2) = 2727.655 – 2111.228  = 616.427 
R(β2|β0,β1) = SSREG(β0,β1,β2) – SSREG(β0,β1) = 2727.655 – 1400.983 = 1326.672 

 
The same values are obtained when the residual sums of squares are used: 

R(β1|β0,β2) = SSRES(β0,β2) – SSRES(β0,β1,β2) = 1174.486 – 558.059 = 616.427 
R(β2|β0,β1) = SSRES(β0,β1) – SSRES(β0,β1,β2) = 1884.731 – 558.059 = 1326.672 

 
To test the parameters the following F statistics are calculated. For example, for testing H0: 
β2 = 0, vs. H1: β2 ≠ 0, using the partial sum of squares the value of F statistic is: 
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The critical value of the F distribution for α = 0.05 and 1 and 4 degrees of freedom is 
F0.05,1,4 = 7.71 (See Appendix B: Critical values of the F distribution). Since the calculated F 
= 4.42 is not greater than the critical value, H0 is not rejected.  
 
The sequential and partial sums of squares with corresponding degrees of freedom and F 
values can be summarized in ANOVA tables. 
 
The ANOVA table with sequential sums of squares: 
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Source  SS df MS F 
Heart girth 1400.983 1 1400.983 10.04 
Height 1326.672 1 1326.672 9.51 
Residual  558.059 4 139.515  
Total 3285.714 6   

 
The ANOVA table with partial sums of squares: 
 

Source  SS df MS F 
Heart girth 616.427 1 616.427 4.42 
Height 1326.672 1 1326.672 9.51 
Residual  558.059 4 139.515  
Total 3285.714 6   

 
 

9.3 Testing Model Fit Using a Likelihood Ratio Test 

The adequacy of a reduced model relative to the full-model can be determined by 
comparing their likelihood functions. The values of the likelihood functions for both models 
are computed using their estimated parameters. When analyzing the ratio of the reduced to 
the full model:  

)(
)(

fullL
reducedL  

values close to 1 indicate adequacy of the reduced model. The distribution of the logarithm 
of this ratio multiplied by (–2) has an approximate chi-square distribution with degrees of 
freedom equal to the difference between the number of parameters of the full and reduced 
models:  

[ ])()(2
)(
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fullL

reducedLlog +−=−=χ  

This expression is valid when variances are either known or are estimated from a sample. 
 
 
Example: For the weight, heart girth and height data of young bulls, the likelihood 
functions will be used to test the necessity for inclusion of the variable height (described 
with the parameter β2) in the model.  
 
The full model is: 

yi = β0 + β1x1i + β2x2i + εi  

The reduced model is: 

yi = β0 + β1x1i + εi  

where: 
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yi = the weight of bull i  
x1i = the heart girth of bull i 
x2i = the height of bull i 
β0, β1, β2 = regression parameters 
εi = random error  

 
The parameters were estimated by finding the maximum of the corresponding likelihood 
functions. Recall that the equations for estimating the parameters are equal for both 
maximum likelihood and least squares. However, the maximum likelihood estimators of the 
variances are the following. For the full model: 
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Estimates of the parameters are given in the following table: 
 

 Estimates 
 b0 b1 b2 s2

ML SSRES 
Full model –495.014 2.257 4.581 79.723 558.059 
Reduced model –92.624 3.247  269.247 1884.731 
 
 
The value of the log likelihood function for the full model is: 
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The value of log likelihood function for the reduced model is: 

( ) ( )
( )

=
−−

−−−= ∑
2

_

2
1102

_
2

_10 2
2

22
)|,,(

REDUCEDML

i ii
REDUCEDMLREDUCEDML s

xbby
lognslognysbblogL π

( ) ( ) =−−−= 2
_

_2
_ 2

2
22 REDUCEDML

REDUCEDRES
REDUCEDML s

SS
lognslogn π  

( ) ( ) 516.29
)247.269(2

731.18842
2
7247.269

2
7

−=−−−= πloglog  



168  Biostatistics for Animal Science 

 

The value of the χ2 statistic is: 
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The critical value of the chi-square distribution for 1 degree of freedom (the difference 
between the number of parameters of the full and reduced models) and a significance level 
of 0.05, is χ2

0.05,1 = 3.841. The calculated value is greater than the critical value, thus the 
variable height is needed in the model.  
 
 
Assuming that the variances are equal regardless of the model, the likelihood functions of 
the full and reduced models differ only for the expression of the residual sums of squares. 
Then, with the known variance: 
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For large n the distribution of this expression is approximately chi-square. Further, 
assuming normality of y, the distribution is exactly chi-square. 

The variance σ2 can be estimated by the residual sum of squares from the full model 
divided by (n - pFULL) degrees of freedom. Then: 
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has a chi-square distribution with (n – pFULL) degrees of freedom. Assuming normality, if 
the expression is divided by (pFULL – pREDUCED), then: 
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has an F distribution with (pFULL – pREDUCED) and (n – pFULL) degrees of freedom. Note that 
this is exactly the same expression derived from the extra sums of squares if y is a normal 
variable. 
 

9.4 SAS Example for Multiple Regression 

The SAS program for the example of weights, heart girths and heights of young bulls is as 
follows. Recall the data: 
 

Bull: 1 2 3 4 5 6 7 
Weight, kg (y): 480 450 480 500 520 510 500 
Heart girth, cm (x1): 175 177 178 175 186 183 185 
Height, cm (x2): 128 122 124 128 131 130 124 
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SAS program: 
 
DATA bulls; 
INPUT weight h_girth height; 
DATALINES; 
480 175 128  
450 177 122  
480 178 124  
500 175 128  
520 186 131  
510 183 130  
500 185 124 
; 
PROC GLM; 
MODEL weight=h_girth height  ; 
RUN; 

 
Explanation: Either the GLM or REG procedure can be used. The statement, MODEL 
weight = h_girth height defines weight as the dependent, and h_girth and height as 
independent variables. 
 
SAS output: 
 
Dependent Variable: weight 
 
                            Sum of 
 Source           DF       Squares   Mean Square  F Value  Pr > F 
 Model             2   2727.655201   1363.827601     9.78  0.0288 
 Error             4    558.059085    139.514771 
 Corrected Total   6   3285.714286 
 
      R-Square     Coeff Var      Root MSE    weight Mean 
      0.830156      2.403531      11.81164       491.4286 
 
 Source      DF     Type I SS   Mean Square  F Value  Pr > F 
 h_girth      1   1400.983103   1400.983103    10.04  0.0339 
 height       1   1326.672098   1326.672098     9.51  0.0368 
 
 Source      DF   Type III SS   Mean Square  F Value  Pr > F 
 h_girth      1    616.426512    616.426512     4.42  0.1034 
 height       1   1326.672098   1326.672098     9.51  0.0368 
 
                              Standard 
Parameter     Estimate         Error      t Value    Pr > |t| 
Intercept -495.0140313     225.8696150      -2.19      0.0935 
h_girth      2.2572580       1.0738674       2.10      0.1034 
height       4.5808460       1.4855045       3.08      0.0368 
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Explanation: The first table is an ANOVA table for the dependent variable weight. The 
sources of variation are Model, Error and Corrected Total. In the table are listed: degrees of 
freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P value (Pr>F). It 
can be seen that F = 9.78 with a P value = 0.0288. Under the ANOVA table, the coefficient 
of determination (R-square) = 0.830156 and the standard deviation of the dependent 
variable (Root MSE) = 11.81164 are given. In the next two tables F tests for h_girth and 
height are given. Here the F values and corresponding P values describe the significance of 
h_girth and height in the model. The first table is based on the sequential (Type I SS), the 
second on the partial sums of squares (Type III SS). The sequential sums of squares are 
sums of squares corrected on the effects of the variables preceding the observed effect. The 
partial sums of squares are sums of square corrected on all other effects in the model, and 
indicate the significance of a particular independent variable in explaining variation of the 
dependent variable. The same can be seen in the next table, in which parameter estimates 
(Estimate) with corresponding standard errors (Std Error of Estimate), t and P values (Pr > 
|T|) are shown. The t value tests whether the estimates are significantly different than zero. 
The P values for b1 (h_girth) and b2 (height) are 0.1034 and 0.0368. Since P values are 
relatively small, seems that both independent variables are needed in the model. 
 

9.5 Power of Multiple Regression 

Power of test for a multiple linear regression can be calculated by using t or F central and 
noncentral distributions. Recall that the null and alternative hypotheses are H0: β1 = β2 = …= 
βp-1 = 0 and H1: at least one βi ≠ 0, where i = 1 to p – 1, when p is the number of parameters. 
As the alternative hypotheses for particular parameters, the estimates from a sample can be 
used and then H1: βi = bi. The t distribution is used analogously as shown for the simple 
linear regression. Here the use of an F distribution for the whole model and for particular 
regression parameters using sum of squares for regression and partial sums of squares will 
be shown. If H0 holds, then the test statistic F follows a central F distribution with 
corresponding numerator and denominator degrees of freedom. However, if H1 holds, then 

the F statistic has a noncentral F distribution with a noncentrality parameter 
RESMS

SS
=λ  

and the corresponding degrees of freedom. Here, SS denotes the corresponding regression 
sum of squares or partial sum of squares. The power is a probability: 

Power = P (F > Fα,df1,df2 = Fβ) 

that uses a noncentral F distribution for H1, where, Fα,df1,df2 is the critical value with α level 
of significance, and df1 and df2 are degrees of freedom, typically those for calculating the 
regression (or partial regression) and residual mean squares. 
 
 
Example: Calculate the power of test for the example of weights, hearth girths and heights 
of young bulls. Recall that here β1 and β2 are parameters explaining the influence of heart 
girth and height, respectively, on weight. The following were previously computed: 

SSREG_FULL = 2727.655 = the regression sum of squares for the full model 

s2 = MSRES_FULL = 139.515 = the residual mean square for the full model 
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The partial sums of squares are: 

R(β1|β2,β0) = 616.427 

R(β2|β1,β0) = 1326.672 

The partial sums of squares with corresponding means squares, degrees of freedom and F 
values are shown in the following ANOVA table: 
 

Source  SS df MS F 
Heart girth 616.427 1 616.427 4.42 
Height 1326.672 1 1326.672 9.51 
Residual  558.059 4 139.515  
Total 3285.714 6   

 
The estimated noncentrality parameter for the full model is: 

551.19
515.139
655.2727_ ===

RES

FULLREG

MS
SS

λ  

Using a noncentral F distribution with 2 and 4 degrees of freedom and the noncentrality 
parameter λ = 19.551, the power is 0.745. 
 
The estimate of the noncentrality parameter for heart girth is: 

( ) 418.4
515.139

616.427,| 021 ===
RESMS

R βββλ  

Using a noncentral F distribution with 1 and 3 degrees of freedom and the noncentrality 
parameter λ = 4.418, the power is 0.364. 
 
The estimate of the noncentrality parameter for height is: 

( ) 509.9
515.139

1326.672,| 012 ===
RESMS

R βββλ  

Using a noncentral F distribution with 1 and 4 degrees of freedom and the noncentrality 
parameter λ = 9.509, the power is 0.642.  
 
 
9.5.1 SAS Example for Calculating Power 

To compute the power of test with SAS, the following statements can be used: 
 
DATA a; 
alpha=0.05; 
n=7; 
ssreg0=2727.655; 
ssreg1=616.427; 
ssreg2=1326.672; 
msres =139.515; 
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df=n-3; 
lambda0=ssreg0/msres;  
lambda1=ssreg1/msres;  
lambda2=ssreg2/msres;  
Fcrit0=FINV(1-alpha,2,df);   
Fcrit=FINV(1-alpha,1,df);   
power0=1-PROBF(Fcrit0,2,df,lambda0); 
power1=1-PROBF(Fcrit,1,df,lambda1); 
power2=1-PROBF(Fcrit,1,df,lambda2); 
PROC PRINT; 
RUN; 

 
Explanation: The terms used above are: alpha = significance level, n = sample size, 
ssreg0 = regression sum of squares, ssreg1 = sum of squares for heart girth, ssreg2 = sum of 
squares for height, msres = residual mean square, df = residual degrees of freedom. Then 
presented are the corresponding noncentrality parameter estimates, lambda0, lambda1 and 
lambda2, and the critical values, Fcrit0 for the full model regression and Fcrit for the partial 
regressions. The critical value is computed by using the FINV function, which must have 
the cumulative values of percentiles (1 – α = 0.95) and degrees of freedom1 (or 2) and df 
defined. The PROBF function is the cumulative function of the F distribution which needs 
critical values, degrees of freedom and the noncentrality parameters lambda. Instead of 
PROBF(Fcrit,1,df,lambda) the alternative CDF('F',Fcrit,1,df,lambda)can be used. The 
power is calculated as power0, power1, and power2, for the full regression, heart girth, and 
height, respectively. The PRINT procedure results in the following SAS output: 
 
alpha  n  df   ssreg0   ssreg1   ssreg2    msres   lambda0  lambda1 
0.05   7   4   2727.66  616.427  1326.67  139.515  19.5510  4.41836 
 
lambda2     Fcrit0     Fcrit      power0     power1     power2 
9.50917    6.94427    7.70865    0.74517    0.36381    0.64182 

 

9.6 Problems with Regression 

Recall that a set of assumptions must be satisfied in order for a regression analysis to be 
valid. If these assumptions are not satisfied, inferences can be incorrect. Also, there can be 
other difficulties, which are summarized as follows: 1) some observations are unusually 
extreme; 2) model errors do not have constant variance; 3) model errors are not 
independent; 4) model errors are not normally distributed; 5) a nonlinear relationship exists 
between the independent and dependent variables; 6) one or more important independent 
variables are not included in the model; 7) the model is predefined, that is, it contains too 
many independent variables; 8) there is multicolinearity, that is, there is a strong correlation 
between independent variables.  

These difficulties can lead to the use of the wrong model, poor regression estimates, 
failure to reject the null hypothesis when relationship exists, or imprecise parameter 
estimation due to large variance. These problems should be diagnosed and if possible 
eliminated. 
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9.6.1 Analysis of Residuals 

The analysis of residuals can be informative of possible problems or unsatisfied 
assumptions. Recall that a residual is the difference between observed and estimated values 
of the dependent variable: 

iii yye ˆ−=  

The simplest method to inspect residuals is by using graphs. The necessary graphs include 
that of the residuals ei plotted either against estimated values of the dependent variable iŷ , 
or observed values of the independent variable xi. The following figures indicate correctness 
or incorrectness of a regression model. 
 

 

*

*
**

*
**

*
*

**
0 

( )yx ˆ 

e 

 
The model is correct. There is no systematic dispersion of residuals. The variance of e is 
constant across all values of x( ŷ ). No unusual extreme observations are apparent.  
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The figure shows a nonlinear influence of the independent on the dependent variable. 
Probably xi

2 or xi
3 is required in the model. It is also possible that the relationship follows a 

log, exponential or some other nonlinear function. 
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This figure implies that errors are not independent. This is called autocorrelation. 
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The variance is not homogeneous (constant). Increasing values of the independent variable 
lead to an increase in the variance. Transformation of either the x or y variable is needed. It 
may also be necessary to define a different variance structure. Normality of errors should be 
checked. Non normality may invalidate the F or t tests. One way to deal with such problems 
is to apply a so called generalized linear model, which can use distributions other than 
normal, define a function of the mean of the dependent variable, and correct the models for 
heterogeneous variance. 
 
 
9.6.2 Extreme Observations 

Some observations can be extreme compared either to the postulated model or to the mean 
of values of the independent variable(s). An extreme observation which opposes the 
postulated model is often called an outlier. An observation which is far from the mean of 
the x variable(s) is said to have high leverage. Extreme observations can, but do not always, 
have high influence on regression estimation. Figure 9.1 shows typical cases of extreme 
values. 
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Figure 9.1  Extreme observations in regression analysis. Extremes are encircled and 
enumerated: a) high leverage extremes are: 3, 4 and 5; b) outliers are: 1, 2 and 4; c) 
extremes that influence regression estimation are: 2, 4 and 5 

 
These extreme values should be checked to determine their validity. If an error in recording 
or a biological cause can be determined, there may be justification for deleting them from 
the dataset. 

The simplest way to detect outliers is by inspection of graphs or tables of residuals. 
This approach can be very subjective. A better approach is to express residuals as 
standardized or studentized residuals. Recall that a residual is iii yye ˆ−= . A standardized 
residual is: 

s
er i

i =   

where RESMSs =  = estimated residual standard deviation. 
A studentized residual is: 

e

i
i s

er =  

where ( )iiRESe hMSs −= 1 , and hii = diagonal element of the matrix H = [X(X’X)–1X’]. 
 
When residual values are standardized or studentized, a value ri > 2 (greater than two 
standard deviations) implies considerable deviation. 

Observations with high leverage can be detected by examining the hii value, that is, the 
corresponding diagonal element of [X(X’X)–1X’]. Properties of hii are:  
a) 1/n ≤ hii ≤ 1  

b) Σi hii = p 
where p is the number of parameters in the model. 

Observation i has a high leverage if 
n
phii

2
≥ , where n is the number of observations. 
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Statistics used in detecting possible undue influence of a particular observation i on the 
estimated regression (influence statistics) are Difference in Fit (DFITTS), Difference in 
Betas (DFBETAS) and Cook’s distance.  
 
The DFITTS statistic determines the influence of an observation i on the estimated or fitted 
value iŷ , and is defined as: 

iii

iii
i hs

yy
DFITTS

−

−−
= ,ˆˆ

 

where:  
iŷ  = the estimated value of the dependent variable for a given value of the 

independent variable xi, with the regression estimated using all observations  
iiy −,ˆ  = the predicted value of the dependent variable for a given value of the 

independent variable xi, with the regression estimated without including 
observation i  

s-i = RESMS  not including observation i  
hii = the value of a diagonal element i of the matrix [X(X'X)–1X'] 

 
The observation i influences the estimation of the regression parameters if 

n
pDFITTSi 2 || ≥ , where p is the number of parameters and n is the number of 

observations. 
 
The statistic that determines the influence of an observation i on the estimated parameter bk 
is DFBETAS, defined as: 
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where: 
bk = the estimate of parameter βk including all observations 
bk,-i = the estimate of parameter βk not including the observation i  
s-i = RESMS  not including observation i  
ckk = the value of the diagonal element k of the matrix (X’X)–1 

 

Observation i influences the estimation of parameter βk if 
n

DFBETASi
2 || ≥ , where n is 

the number of observations. 
 
Cook's distance (Di) determines the influence of an observation i on estimation of the vector 
of parameters b, and consequently, on estimation of the regression: 
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where: 
b = the vector of estimated parameters including all observations 
b-i = the vector of  estimated parameters not including the observation i  
s2 = MSRES = the residual mean square 
p = the number of parameters in the model 

 
Observation i influences the estimation of the b vector if Di > 1. 
 
A statistic that also can be used to determine the influence of observations on estimation of 
parameters is COVRATIO. This is a ratio of generalized variances. A generalized variance is 
the determinant of the covariance matrix: 
GV = |var(b)| = |σ2(X'X)–1| 
COVRATIO is defined as: 
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where: 
s2 (X'X)–1 = the covariance matrix for estimated parameters including all 

observations 
s2

-i (X-i' X-i)–1 = the covariance matrix for estimated parameters not including the 
observation i 

 
Observation i should be checked as a possible influence on estimation of the vector 

parameter b if  
n
pCOVRATIOi

31−<  or 
n
pCOVRATIOi

31+> . 

 
How should observations classified as outliers, high leverage, and especially influential 
observations be treated? If it is known that specific observations are extreme due to a 
mistake in measurement or recording a malfunction of a measurement device, or some 
unusual environmental effect, there is justification for deleting them from the analysis. On 
the other hand extreme observations may be the consequence of an incorrectly postulated 
model, for example, in a model where an important independent variable has been omitted, 
deletion of data would result in misinterpretation of the results. Thus, caution should be 
exercised before deleting extreme observations from an analysis. 
 
 
9.6.3 Multicollinearity 

Multicollinearity exists when there is high correlation between independent variables. In 
that case parameter estimates are unreliable, because the variance of parameter estimates is 
large. Recall that the estimated variance of the b vector is equal to: 

Var (b) = s2 (X'X)–1  

Multicollinearity means that columns of (X'X) are nearly linearly dependent, which 
indicates that (X'X)-1 and consequently the Var(b) is not stable. The result is that slight 
changes of observations in a sample can lead to quite different parameter estimates. It is 
obvious that inferences based on such a model are not very reliable.  
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Multicollinearity can be determined using a Variance Inflation Factor (VIF) statistic, 
defined as:  

21
1

kR
VIF

−
=  

where Rk
2 is the coefficient of determination of the regression of independent variable k on 

all other independent variables in the postulated model. 
If all independent variables are orthogonal, which means totally independent of each 

other, then Rk
2 = 0 and VIF =1. If one independent variable can be expressed as a linear 

combination of the other independent variables (the independent variables are linearly 
dependent), then Rk

2 = 1 and VIF approaches infinity. Thus, a large VIF indicates low 
precision of estimation of the parameter βk. A practical rule is that a VIF > 10 suggests 
multicollinearity. 

Multicollinearity can also be determined by inspection of sequential and partial sums 
of squares. If for a particular independent variable the sequential sum of squares is much 
larger than the partial sum of squares, multicollinearity may be the cause. Further, if the 
partial parameter estimates are significant and the regression in whole is not, 
multicollinearity is very likely.  

Possible remedies for multicollinearity are: a) drop unnecessary independent variables 
from the model; b) define several correlated independent variables as one new variable; 
c) drop problematic observations or d) use an advanced statistical methods like ridge 
regression or principal components analysis. 
 
 
9.6.4 SAS Example for Detecting Problems with Regression 

The SAS program for detecting extreme observations and multicollinearity will be shown 
using an example with measurements of weights, heart girths, wither heights and rump 
heights of 10 young bulls: 
 

Weight  
(kg) 

Heart girth 
 (cm) 

Height at withers 
 (cm) 

Height at rump 
(cm) 

480 175 128 126 
450 177 122 120 
480 178 124 121 
500 175 128 125 
520 186 131 128 
510 183 130 127 
500 185 124 123 
480 181 129 127 
490 180 127 125 
500 179 130 127 
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SAS program: 
 
DATA bull; 
INPUT weight  h_girth  ht_w  ht_r ; 
DATALINES; 
480 175 128 126 
450 177 122 120 
480 178 124 121 
500 175 128 125 
520 186 131 128 
510 183 130 127 
500 185 124 123 
480 181 129 127 
490 180 127 125 
500 179 130 127 
; 
PROC REG DATA=bull; 
MODEL weight = h_girth  ht_w  ht_r/ SS1 SS2 INFLUENCE R VIF ; 
RUN; 

 
Explanation: The REG procedure was used. The statement, MODEL weight = h_girth ht_w 
ht_r denotes weight as the dependent variable and h_girth (heart girth), ht_w (height at 
withers) and ht_r (height at rump) as independent variables. Options used in the MODEL 
statement are SS1 (computes sequential sums of squares), SS2 (computes partial sums of 
squares), INFLUENCE (analyzes extreme observations), R (analyzes residuals) and VIF 
(variance inflation factor, analyzes multicollinearity).  
 
SAS output: 
                  Dependent Variable: weight 
 
                   Analysis of Variance 
 
                           Sum of          Mean 
Source          DF       Squares        Square   F Value   Pr > F 
Model            3    2522.23150     840.74383      5.21   0.0415 
Error            6     967.76850     161.29475 
Corrected Total  9    3490.00000 
 
     Root MSE             12.70019    R-Square     0.7227 
     Dependent Mean      491.00000    Adj R-Sq     0.5841 
     Coeff Var             2.58660 
 
                            Parameter Estimates 
 
                 Parameter  Stand 
Variable   DF    Estimate   Error    t Value   Pr > |t|  Type I SS 
Intercept   1  -382.75201  239.24982   -1.60    0.1608     2410810 
h_girth     1     2.51820    1.21053    2.08    0.0827  1252.19422 
ht_w        1     8.58321    6.65163    1.29    0.2444  1187.81454 
ht_r        1    -5.37962    7.53470   -0.71    0.5021    82.22274 
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                     Parameter Estimates 
 

                                      Variance 
     Variable   DF   Type II SS      Inflation 
     Intercept   1    412.81164              0 
     h_girth     1    697.99319        1.22558 
     ht_w        1    268.57379       22.52057 
     ht_r        1     82.22274       23.54714 
 

                             Output Statistics 
 

      Dep Var Predicted    Std Error            Std Error  Student 
Obs   weight   Value     Mean Predict  Residual  Residual Residual 
  1  480.0000  478.7515     9.2109     1.2485     8.744    0.143 
  2  450.0000  464.5664     8.6310   -14.5664     9.317   -1.563 
  3  480.0000  478.8714     9.4689     1.1286     8.464    0.133 
  4  500.0000  484.1311     7.3592    15.8689    10.351    1.533 
  5  520.0000  521.4421     9.1321    -1.4421     8.826   -0.163 
  6  510.0000  510.6839     6.7483    -0.6839    10.759   -0.0636 
  7  500.0000  485.7395    10.5958    14.2605     7.002    2.037 
  8  480.0000  497.0643     6.3929   -17.0643    10.974   -1.555 
  9  490.0000  488.1389     4.8402     1.8611    11.742    0.159 
 10  500.0000  500.6111     6.0434    -0.6111    11.170   -0.0547 
 

                        Cook's           Hat Diag      Cov 
Obs   -2-1 0 1 2           D  RStudent        H    Ratio   DFFITS 
  1 |      |      |    0.006    0.1306   0.5260   4.3155   0.1375 
  2 |   ***|      |    0.524   -1.8541   0.4619   0.4752  -1.7176 
  3 |      |      |    0.006    0.1219   0.5559   4.6139   0.1364 
  4 |      |***   |    0.297    1.7945   0.3358   0.4273   1.2759 
  5 |      |      |    0.007   -0.1495   0.5170   4.2175  -0.1547 
  6 |      |      |    0.000   -0.0580   0.2823   2.8816  -0.0364 
  7 |      |****  |    2.375    3.3467   0.6961   0.0619   5.0647 
  8 |   ***|      |    0.205   -1.8372   0.2534   0.3528  -1.0703 
  9 |      |      |    0.001    0.1450   0.1452   2.3856   0.0598 
 10 |      |      |    0.000   -0.0500   0.2264   2.6752  -0.0270 
 

        -------------------DFBETAS------------------- 
    Obs Intercept     h_girth       ht_w        ht_r 
      1    0.0321     -0.1118     -0.0763      0.0867 
      2   -1.3150      0.1374      0.0444      0.2591 
      3    0.0757      0.0241      0.0874     -0.1033 
      4    0.5872     -0.8449      0.3882     -0.3001 
      5    0.1153     -0.1059     -0.0663      0.0545 
      6    0.0208     -0.0181     -0.0193      0.0162 
      7   -0.8927      2.3516     -2.9784      2.3708 
      8    0.4682      0.1598      0.6285     -0.7244 
      9   -0.0025     -0.0087     -0.0333      0.0328 
     10    0.0054      0.0067     -0.0099      0.0059 
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Explanation: The first table is the analysis of variance table. The next table is Parameter 
Estimates, in which the Parameter Estimate, Standard Error, t Value, P value (Pr > |t|), 
sequential sums of squares (Type I SS), partial sums of squares (Type II SS), degrees of 
freedom (DF) and VIF statistics (Variance Inflation) are given. For ht_w and ht_r VIF 
values are greater than 10. The VIF for these variables indicates that both are not necessary 
in the model. There is collinearity between them. In the next table, Output statistics, for 
detection of extreme observations are shown. Listed are: the dependent variable (Dep Var), 
Predicted Value, standard error of prediction (Std Error Mean Predict), Residual, standard 
error of residual (Std Error Residual), studentized residuals (Student Residual), simple 
graphical presentations of deviations of observations from the estimated values (-2 -1 0 1 2), 
Cook’s distance (Cook’s D), studentized residuals estimated using s-i = RESMS  not 
including observation i (Rstudent), h value (Hat Diag H), CovRatio, DFFITS and 
DFBETAS. 

SAS leaves to the researcher the decision of which observations are extreme and 
influential. For this example p = 4 and n = 10, and the calculated critical values are: 

8.02
=≥

n
phii  

26.12 || =≥
n
pDFITTSi  

63.02 || =≥
n

DFBETASi  

Cook’s Di > 1 

2.031 −=−<
n
pCOVRATIOi  or 

2.231 =+>
n
pCOVRATIOi  

The values in the SAS output can be compared with the computed criteria. In this output 
observations having exceeded the criteria are emphasized with bold letters. The studentized 
residual was greater than 2 for observation 7. No hii was greater than 0.8, that is, no high 
leverage was detected. The Cook’s D exceeded 1 for observation 7. The covariance ratios of 
observations, 1, 3, 5, 6, 9 and 10 exceeded the critical criteria which also can raise questions 
about the validity of the chosen model. The DFFITS for observations 2, 4 and 7 exceed the 
criteria. The DFBETAS exceeded the critical values for observations 2, 4 and 7. Obviously, 
observation 7 is an influential outlier and it should be considered for removal.  
 

9.7 Choosing the Best Model 

In most cases where regression analyses are applied, there can be several potential 
independent variables that could be included in the model. An ideal situation would be that 
the model is known in advance. However, it is often not easy to decide which independent 
variables are really needed in the model. Two errors can happen. First, the model has fewer 
variables than it should have. Here, the precision of the model would be less than possible. 
Second, the model has too many variables. This can lead to multicollinearity and its 
consequences which have already been discussed. For a regression model to be optimal it 
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must have the best set of parameters. Several models with different sets of parameters might 
all be shown to be relatively good. In addition to statistical considerations for a model to be 
useful in explaining a problem, it should be easy to explain and use. There are several 
criteria widely used for selecting an optimal model.  
 
a) Coefficient of determination  (R2) 
The coefficient of determination always increases as new variables are added to the model. 
The question is when added to the model, which variables will notably increase the R2 ?  
 
b) Residual mean square (MSRES) 
The residual mean square usually decreases when new variables are added to the model. 
There is a risk to choosing too large a model. The decrease in error degrees of freedom can 
offset the decrease in the error sum of squares and the addition of unnecessary effects to a 
model can increase the residual mean square. 
 
c) Partial F tests 
The significance of particular variables in the model are independently tested using partial F 
tests. However, those tests do not indicate anything about prediction and the optimal model.  
Due to multicollinearity, variables tested separately can look important, however, the total 
model may not be very accurate.  
 
d) Cp criterion  
Cp stands for Conceptual predictive criterion. It is used to determine a model maximizing 
explained variability with as few variables as possible. A model candidate is compared with 
the 'true’ model. The formula for Cp is: 

( )( )
2
0

2
0

ˆ
 ˆ

σ
σ pnMSpCp RES −−

+=  

where: 
MSRES = residual mean square for the candidate model 

2
0σ̂ = variance estimate of the true model 

n = the number of observations 
p = the number of parameters of the candidate model 

The problem is to determine the ‘true’ model. Usually, the estimate of the variance from the 
full model, that is, the model with the maximal number of parameters, is used. Then: 

_FULL
2
0ˆ RESMS≅σ  

If the candidate model is too small, that is, some important independent variables are not in 
the model, then Cp >> p. If the candidate model is large enough, that is, all important 
independent variables are included in the model, then Cp is less than p. Note that for the full 
model Cp = p. 
 
e) Akaike information  criterion (AIC) 
The main characteristic of this criterion is that it is not necessary to define the largest model 
to compute the criterion. Each model has its own AIC regardless of other models. The 
model with the smallest AIC is considered optimal. For a regression model AIC is: 

AIC = n log(SSRES / n) + 2p  
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where: 
SSRES = residual mean square 
n = the number of observations 
p = the number of parameters of the model 

 
9.7.1 SAS Example for Model Selection 

The SAS program for defining an optimal model will be shown on the example of 
measurements of weight, heart girth, withers height and rump height of 10 young bulls: 
 

Weight  
(kg) 

Heart girth 
 (cm) 

Height at withers 
 (cm) 

Height at rump 
(cm) 

480 175 128 126 
450 177 122 120 
480 178 124 121 
500 175 128 125 
520 186 131 128 
510 183 130 127 
500 185 124 123 
480 181 129 127 
490 180 127 125 
500 179 130 127 

 
SAS program: 
 
DATA bull;  
INPUT weight h_girth ht_w ht_r; 
DATALINES; 
480 175 128 126 
450 177 122 120 
480 178 124 121 
500 175 128 125 
520 186 131 128 
510 183 130 127 
500 185 124 123 
480 181 129 127 
490 180 127 125 
500 179 130 127 

; 
PROC REG DATA=bull; 
MODEL weight=h_girth ht_w ht_r/ SSE CP AIC SELECTION=CP ; 
RUN; 

 
Explanation: The REG procedure was used. The statement, MODEL weight = h_girth ht_w 
ht_r denotes weight as a dependent variable, and h_girth (heart girth), ht_w (height at 
withers) and ht_r (height at rump) as independent variables. Options used in the  MODEL 
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statement are SSE (computes SSRES for each model), CP (Cp statistics), AIC (Akaike 
criterion), SELECTION = CP (model selection is done according to the CP criterion). 
 
SAS output: 
                Dependent Variable: weight 
                 C(p) Selection Method 
 
Number 
in 
Model  C(p)  R-Square    AIC        SSE  Variables in Model 
  2   2.5098   0.6991   52.5395   1049.991   h_girth  ht_w 
  2   3.6651   0.6457   54.1733   1236.342   h_girth  ht_r 
  3   4.0000   0.7227   53.7241    967.768   h_girth  ht_w  ht_r 
  1   4.3275   0.5227   55.1546   1665.773   ht_w 
  1   4.8613   0.4980   55.6585   1751.868   ht_r 
  2   6.3274   0.5227   57.1545   1665.762   ht_w  ht_r 
  1   7.8740   0.3588   58.1067   2237.806   h_girth 

 
Explanation: The table presents the number of independent variables in the model (Number 
in Model), Cp statistic (C(p)), coefficient of determination (R-square), Akaike criterion 
(AIC), residual sum of squares (SSE) and a list of variables included in the model (Variables 
in Model). Since the maximum number of independent variables is assumed to be three, 
there are seven possible different models. The models are ranked according to Cp. The 
number of parameters for each model is the number independent variables +1, p = (Number 
in Model) +1. The value of Cp for the model with h_girth (heart girth) and ht_w (height at 
withers) is smaller than the number of parameters in that model, which implies that this is an 
optimal model. Also, there is a small relative increase in R2 for models with h_girth, ht_w 
and ht_r compared to model with h_girth and ht_w. The AIC criterion is the smallest for the 
model with h_girth and ht_w. It can be concluded that the model with h_girth and ht_w 
variables is optimal and sufficient to explain weight.  

The optimal model based on the Cp criterion can be seen from a plot of the Cp value 
on the number parameters (p) in the model (Figure 9.2). Points below the line Cp = p denote 
good models. Note that Cp for the model with h_girth and ht_w lies below the line. The Cp 
for the full model, h_girth, ht_w, ht_r, lies exactly on the line. 
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Figure 9.2  Graph of Cp criterion. The line denotes values p = Cp. The optimal model is 
marked with an arrow 
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Chapter 10  
 
Curvilinear Regression  

In some situations the influence of an independent on a dependent variable is not linear. The 
simple linear regression model is not suitable for such problems, not only would the 
prediction be poor, but the assumptions of the model would likely not be satisfied. Three 
approaches will be described for evaluating curvilinear relationship: polynomial, nonlinear 
and segmented regression. 

10.1 Polynomial Regression 

A curvilinear relationship between the dependent variable y and independent variable x can 
sometimes be described by using a polynomial regression of second or higher order. For 
example, a model for a polynomial regression of second degree or quadratic regression for n 
observations is:  

yi = β0 + β1xi + β2x2
i + εi  i = 1,..., n 

where: 
yi = observation i of dependent variable y 
xi = observation i of independent variable x  
β0 , β1 , β2 = regression parameters 
εi = random error  

In matrix notation the model is: 

y = Xβ + ε 

The matrices and vectors are defined as: 
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Note, that although the relationship between x and y is not linear, the polynomial model is 
still considered to be a linear model. A linear model is defined as a model that is linear in 
the parameters, regardless of relationships of the y and x variables. Consequently, a 
quadratic regression model can be considered as a multiple linear regression with two 
‘independent’ variables x and x2, and further estimation and tests are analogous as with 
multiple regression with two independent variables. For example, the estimated regression 
model is: 
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Xby =ˆ  

and the vector of parameter estimators is: 
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b  = (X’X)–1X’y 

The null and alternative hypotheses of the quadratic regression are: 

H0: β1 = β2 = 0 
H1: at least one βi ≠ 0, i = 1 and 2  

If H0 is true the statistic 

RES

REG

MS
MSF =  

has an F distribution with 2 and (n – 3) degrees of freedom. Here, MSREG and MSRES = s2 are 
regression and residual means squares, respectively. The H0 is rejected with α level of 
significance if the calculated F is greater than the critical value (F > Fα,2,n-3). 

The F test determines if b1 or b2 are significantly different from zero. Of primary 
interest is to determine if the parameter β2 is needed in the model, that is, whether linear 
regression is adequate. A way to test the H0: β2 = 0 is by using a t statistic: 

)( 2

2

bs
b

t =  

where s(b2) is the standard deviation of b2. Recall that the variance-covariance matrix for b0, 
b1 and b2 is: 

s2(b) = s2(X'X)–1  

 
 
Example: Describe the growth of Zagorje turkeys with a quadratic function. Data are 
shown in the following table:  
 

Weight, g (y): 44 66 100 150 265 370 455 605 770 
Age, days (x): 1 7 14 21 28 35 42 49 56
Age2,days (x2) 1 49 196 441 784 1225 1764 2401 3136 
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The y vector and X matrix are: 
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The vector of parameter estimates is: 

b = (X'X)–1X'y 

The X'X and X'y matrices are: 
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The estimated function is: 

 
y = 38.86 + 2.07x + 0.195x2   
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Figure 10.1  Growth of Zagorje turkeys described with a quadratic function. Observed 
values are shown as points relative to the fitted quadratic regression line (•) 

 
The ANOVA table is: 
 

Source SS df MS F 
Regression 523870.4 2 261935.2 1246.8  
Residual 1260.5 6 210.1  
Total 525130.9 8   

 
The estimated regression is significant. To test appropriateness of the quadratic term in the 
model, a t statistic can be used: 

)( 2

2

bs
bt =  

 



Chapter 10  Curvilinear Regression  189 

 

The variance estimate is s2 = 210.1. The inverse of (X'X) is:  

















−
−=−

0000014.00000820.00006986.0
0000820.00049980.00493373.0
0006986.00493373.07220559.0

)( 1XX'  

The variance-covariance matrix of the estimates is: 
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It follows that the estimated variance for b2 is: 

s2(b2) = (210.1)(0.0000014) = 0.000304 

The standard deviation for b2 is:  

0174.0000304.0  )( 2 ==bs   

The calculated t from the sample is: 

207.11
0174.0
195.0

==t  

The critical value is t0.025,6 = 2.447 (See Appendix B: Critical values of student t 
distribution). Since the calculated t is more extreme than the critical value, H0 is rejected 
and it can be concluded that a quadratic function is appropriate for describing the growth of 
Zagorje turkeys.  
 
 
10.1.1 SAS Example for Quadratic Regression 

The SAS program for the example of turkey growth data is as follows.  
 

SAS program: 
 
DATA turkey; 
INPUT weight day @@; 
DATALINES; 
44 1  66 7  100 14  150 21  265 28  370 35  455 42  605 49  770 56 
; 
PROC GLM; 
MODEL weight=day day*day/ ; 
RUN; 

 
Explanation: The GLM procedure is used. The statement MODEL weight = day day*day 
defines weight as the dependent variable, day as a linear component and day*day as a 
quadratic component of the independent variable.  
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SAS output: 
 

Dependent Variable: WEIGHT 
                       Sum of           Mean 
Source          DF     Squares          Square     F Value   Pr > F 
Model           2   523870.39532    261935.19766   1246.82   0.0001 
Error           6     1260.49357       210.08226 
Corrected Total 8   525130.88889 
 

  R-Square             C.V.        Root MSE          WEIGHT Mean 
  0.997600         4.617626       14.494215            313.88889 
 

Source     DF        Type I SS     Mean Square   F Value     Pr > F 
DAY         1     497569.66165    497569.66165   2368.45     0.0001 
DAY*DAY     1      26300.73366     26300.73366    125.19     0.0001 
 

Source     DF      Type III SS     Mean Square   F Value     Pr > F 
DAY         1       859.390183      859.390183      4.09     0.0896 
DAY*DAY     1     26300.733664    26300.733664    125.19     0.0001 
 

                               T for H0:    Pr > |T|   Std Error of 
Parameter         Estimate    Parameter=0                Estimate 
INTERCEPT      38.85551791           3.15     0.0197    12.31629594 
DAY             2.07249024           2.02     0.0896     1.02468881 
DAY*DAY         0.19515458          11.19     0.0001     0.01744173 
 

Explanation: In the ANOVA table there is a large F value (1246.82) and analogously small 
P value (Pr > F). This is not surprising for growth in time. The question is if the quadratic 
parameter is needed or if the linear component alone is enough to explain growth. The table 
with sequential (Type I SS) is used to determine if the quadratic component is needed after 
fitting the linear effect. The P value for DAY*DAY = 0.0001, indicating the quadratic 
component is needed. The same conclusion is reached by looking at the table of parameter 
estimates and t tests. The estimates are: b0 (INTERCEPT) = 38.85551791, 
b1 (DAY) = 2.07249024 and b2 (DAY*DAY) = 0.19515458. 

10.2 Nonlinear Regression 

Explanation of a curvilinear relationship between a dependent variable y and an independent 
variable x sometimes requires a true nonlinear function. Recall that linear models are linear 
in the parameters. A nonlinear regression model is a model that is not linear in the 
parameters. Assuming additive errors a nonlinear model is: 

y = f(x, θ) + ε  

where: 
y = the dependent variable 
f(x, θ) = a nonlinear function of the independent variable x with parameters θ  
ε = random error 
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Examples of nonlinear functions commonly used to fit biological phenomena include 
exponential, logarithmic and logistic functions and their families. The exponential 
regression model can be expressed as: 

i
x

i
iy εββ β +−= 2e10   i = 1,..., n 

where β0, β1 and β2 are parameters, and e is the base of the natural logarithm. This is not a 
linear model as the parameter β2 is not linear in y. Figure 10.2 shows four exponential 
functions with different combinations of positive and negative β1 and β2 parameters.  

  

  
Figure 10.2  Exponential functions with parameter β0 =30 and: a) β1 = –20, and β2 = -0.5; 
b) β1 = –20, and β2 = +0.5; c) β1 = +20, and β2 = -0.5; and d) β1 = +20, and β2 = +0.5 

 
Often the parameters are transformed in order to have biological meaning. For example, the 
following exponential function:  
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has parameters defined in the following way:  
A = asymptote, the maximum function value 
y0 = the function value at the initial value x0 of the independent variable x 
k = rate of increase of function values 

When used to describe growth this function is usually referred to as the Brody curve.  
 
Another commonly applied model is the logistic regression model: 
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The logistic model has parameters defined as: 
β0 = asymptote, the maximum function value 

1

0

1 β
β
+

 = the initial value at xi = 0 

β2 = a parameter influencing the shape of the curve 
 

This model is used as a growth model, but also is widely applied in analyses of binary 
dependent variables. A logistic model with the parameters: β0 =30, β1 = 20, and β2 = –1 is 
shown in Figure 10.3. 

 
Figure 10.3  Logistic function with the parameters: β0 =30, β1 = 20, and β2 = –1 

There are many functions that are used to describe growth, lactation or changes in 
concentration of some substance over time. Parameters of nonlinear functions can be 
estimated using various numerical iterative methods. The NLIN procedure of SAS will be 
used to estimate parameters describing growth by fitting a Brody curve to weights of an 
Angus cow. 
 
 
10.2.1 SAS Example for Nonlinear Regression 

The SAS program for nonlinear regression is as follows. Data represent weights of an 
Angus cow at ages from 8 to 108 months: 

 
Weight, kg : 280 340 430 480 550 580 590 600 590 600 
Age, months : 8 12 24 36 48 60 72 84 96 108 
 

The Brody curve was fitted to the data: 

( ) ( )0 0
AgeAgek

i
ieWeightAAWeight −−−−=  

where:  
A = the asymptotic (mature) weight 
Weight0 = the estimated initial weight at  Age0 = 8 months 
k = the maturing rate index 
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SAS program: 
 
DATA a; 
INPUT age weight @@; 
DATALINES; 
  8  280    12  340    24  430    36  480     48  550 
 60  580    72  590    84  600    96  590    108  600 
; 
PROC NLIN; 
      PARMS A=600 weight0=280 k=0.05; 
      MODEL weight=A-(A-weight0)*exp(-k*(age-8)); 
      RUN; 

 
Explanation: The NLIN procedure is used. The PARMS statement defines parameters with 
their priors. Priors are guesses of the values of the parameters that are needed to start the 
iterative numerical computation. The MODEL statement defines the model: weight is the 
dependent and age is an independent variable, and A, weight0, and k are the parameters to 
be estimated. 

 
SAS output: 
                   Dependent Variable weight 
                      Method: Gauss-Newton 
 
                        Iterative Phase 
                                                   Sum of 
      Iter           A      weight0        k       Squares 
         0       600.0       280.0      0.0500      2540.5 
         1       610.2       285.8      0.0355      1388.7 
         2       612.2       283.7      0.0381       966.9 
         3       612.9       283.9      0.0379       965.9 
         4       612.9       283.9      0.0380       965.9 
         5       612.9       283.9      0.0380       965.9 
 
             NOTE: Convergence criterion met. 
 
                          Sum of        Mean                Approx 
Source             DF     Squares      Square    F Value    Pr > F 
Regression         3     2663434       887811     446.69    <.0001 
Residual           7       965.9       138.0 
Uncorrected Total 10     2664400 
Corrected Total    9      124240 
 
                        Approx 
Parameter   Estimate   Std Error   Approximate 95% Confidence Limi 
A              612.9     9.2683      590.9       634.8 
weight0        283.9     9.4866      261.5       306.3 
k              0.0380    0.00383     0.0289      0.0470 
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            Approximate Correlation Matrix 
               A            weight0             k 
 
A          1.0000000       0.2607907      -0.8276063 
weight0    0.2607907       1.0000000      -0.4940824 
k         -0.8276063      -0.4940824       1.0000000 
 

Explanation: The title of the output indicates that the numerical method of estimation is by 
default Gauss-Newton. The first table describes iterations with the current estimates 
together with residual sums of squares. At the end the program tells us that computation was 
successful (NOTE: Convergence criterion met).  The next table presents an analysis of 
variance table including sources of variation (Regression, Residual, Uncorrected Total, 
Corrected Total), degrees of freedom (DF) Sums of Squares, Mean Squares, F Value and 
approximated P value (Approx Pr > F). The word 'approx' warns that for a nonlinear model 
the F test is approximate, but asymptotically valid. It can be concluded that the model 
explains the growth of the cow. The next table shows the parameter estimates together with 
their approximate Standard Errors and Confidence Intervals. The last table presents 
approximate correlations among the parameter estimates. The estimated curve is:  
 

( ) ( )8038.0 9.2839.6129.612 −−−−= iAge
i eWeight  

 
Figure 10.4 presents a graph of the function with observed and estimated weights. 
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Figure 10.4  Weights over time of an Angus cow fitted to a Brody function; the line 
represents estimated values and the points (•) observed weights 

10.3 Segmented Regression 

Another way to describe a curvilinear relationship between a dependent and an independent 
variable is by defining two or more polynomials, each for a particular segment of values of 
the independent variable. The functions are joined at points separating the segments. The 
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abscissa values of the joining points are usually called knots, and this approach is often 
called segmented or spline regression. The new curve can be defined to be continuous and 
smooth in such a way that in addition to the function values, the first p – 1 derivatives also 
agree at the knots (p being the order of the polynomial). Knots allow the new curve to bend 
and more closely follow the data. For some relationships, these curves have more stable 
parameters and better predictions compared to, for example, higher order polynomials. 

As the simplest problem, assume an event which can be described with two simple 
linear functions that are joined at one point. The models of two simple regressions are: 

yi = β01 + β11x1i + εi for x1i ≤ x0  
yi = β02 + β12x1i + εi for x1i  ≥ x0  

Here, x0 denotes a knot such that the expected value E(yi|x0 ) at that point is the same for 
both functions. These two models can be written as one multiple regression model if another 
independent variable x2 is defined:  

x2i = 0 for x1i ≤ x0 
x2i = (x1i – x0) for x1i > x0 

The new model is: 

yi = γ0 + γ1x1i + γ2x2i + εi 

Using parameters of the new model (γ0, γ1, γ2) and the value of the knot x0, the previous 
simple regression models can be expressed as: 

yi = γ0 + γ1x1i + εi   for x1i ≤ x0  
yi = (γ0 – γ2 x0) + (γ1 + γ2) x1i + εi for x1i > x0 

The parameters β are expressed as combinations of the new parameters γ and the knot x0: 

β01 = γ0  
β11 = γ1  
β02 = γ0 – γ2 x0 
β12 = γ1 + γ2  

With this it is assured that the two regression lines intersect for the value x0; however, note 
that in this case it is not possible to obtain a smooth curve. The test of hypothesis H0: γ2 = 0 
is a test of whether the regression is a straight line for all values of x. Rejection of H0 means 
that two regression functions are needed.  

The knot x0 can be known, or unknown and estimated from a sample. Several 
combinations of simple regressions with different knots can be estimated and the 
combination chosen such that the best fitting segmented line is obtained. Alternatively, a 
nonlinear approach and iterative numerical methods can be used, since the segmented 
regression is nonlinear with respect to the parameters γ2 and x0.  

 
 

Example: Describe growth of Zagorje turkeys by using two simple linear regression 
functions.  
 

Weight, g (y): 44 66 100 150 265 370 455 605 770 
Age, days (x): 1 7 14 21 28 35 42 49 56 
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By inspection of measured data assume a knot x0 = 21. Define a new independent variable 
such that: 

x2i = 0  for x1i ≤ 21  
x2i = (x1 – 21)  for x1i > 21 

Then the variable x2 has values: 

0 0 0 0 7 14 21 28 35 

paired with values of the variable x1. Now a multiple regression with three parameters must 
be estimated: 

yi = γ0 + γ1x1i + γ2x2i + εi 

As results the ANOVA table and parameter estimates are shown: 
 

Source SS df MS F 
Regression 521837.21 2 260918.60 475.31 
     x1 497569.66 1 497569.66 906.41 
     x2 24267.55 1 24267.55 44.21 
Residual 3293.68 6 548.95  
Total 525130.89 8   

 

The calculated F for x2 is 44.21, thus, growth of turkeys cannot be described by a single 
linear function. The parameter estimates are: 
 

Parameter Estimate Standard error 

γ0 36.52 20.05 
γ1 4.66 1.35 
γ2 12.55 1.89 

52.36ˆ
001 == γβ  

66.4ˆ
11 == γβ  

03.227)21)(55.12(52.36ˆˆˆ
02002 −=−=−= xγγβ  

21.1755.1266.4ˆˆˆ
212 =+=+= γγβ  

The estimated lines are (Figure 10.5): 

ii xy 66.452.36ˆ +=  for xi ≤ 21  

ii xy 2166.1703.227ˆ +−=  for xi  ≥ 21 
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Figure 10.5  Growth of Zagorje turkeys shown with two linear regression functions and a 
fixed knot: observed (•) and estimated ( __ ) values 

 
Estimating nutrient requirements is a common use of segmented regression. At a certain 
point values of the dependent variable y reach a plateau, that is, for further changes in the 
values of the independent variable x, the values of y stay the same. For example, an increase 
of methionine only to a certain point increased daily gain in turkey chicks. After that limit, a 
further increase of daily gain was not observed. The objective of the analysis is to estimate 
the point at which the plateau begins - the knot. Two functions can be used: 

yi = β01 + β11xi + εi  for xi ≤ x0  
yi = β02 + εi  for xi ≥ x0  

where x0 is a knot. 
 

A slightly more complicated example describes a quadratic increase to a plateau. Once 
again two functions are used: 

yi = β01 + β11xi + β21xi
2 + εi for  xi ≤ x0 

yi = β02 + εi for  xi ≥ x0 

The regression curve is continuous because the two segments are joined at x0, that is, it 
holds that the expected value E(yi|x0 ) for x0 is the same for both functions:  

E(yi | x0) = β01 + β11x0 + β21x2
0 = β02  

Also, it can be assured in this case that the regression curve is smooth by defining the first 
derivatives of two segments with respect to x to be the same at x0: 

β11 + 2β21x0 = 0  

From this it follows: 

21

11
0 2β

β−
=x  

and 

21

2
11

0102 4β
βββ −=  
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Thus, the segmented regression can be expressed with three parameters (β01 , β11 and β21):  

E(yi | xi) = β01 + β11xi + β21x2
i  for xi ≤ x0  

( )
21

2
11

01 4
|

β
ββ −=ii xyE   for xi ≥ x0  

Note that this segmented regression is nonlinear with respect to those parameters, and their 
estimation requires a nonlinear approach and an iterative numerical method, which will be 
shown using SAS. 
 
 
10.3.1 SAS Examples for Segmented Regression 

10.3.1.1 SAS Example for Segmented Regression with Two Simple Regressions 

The SAS program for segmented regression using two simple regressions will be shown 
using the example of turkey growth. The SAS program will be used to find an optimal value 
for the knot from the data. Recall the data: 
 

Weight, g: 44 66 100 150 265 370 455 605 770 
Age, days: 1 7 14 21 28 35 42 49 56 

 
SAS program: 
 
DATA turkey; 
INPUT weight age @@; 
DATALINES; 
 44  1    66  7   100 14 
150 21   265 28   370 35 
455 42   605 49   770 56 
; 
PROC NLIN DATA = turkey; 
      PARMS a = 36 b = 4 c = 12 x0 = 21; 
      IF age LE x0 THEN                   
         MODEL weight = a+b*age; 
      ELSE                           
MODEL weight = a-c*x0+(b+c)*age; 
RUN; 

 
Explanation: The NLIN procedure is used for fitting nonlinear regression. Recall that two 
simple regressions are estimated: 

weighti = a + b agei   for agei ≤ x0  
weighti = (a – c x0) + (b + c) agei for agei > x0 

which are joined at the knot x0. Here, a, b, and c denote parameter estimators. The knot, x0, 
is also unknown and must be estimated from the data. Note that this specifies a nonlinear 
regression with four unknowns. The PARMS statement defines parameters with their priors, 
which are needed to start the iterative numerical computation. The block of statements:  
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      IF age LE x0 THEN                   
         MODEL weight = a+b*age; 
      ELSE                           
         MODEL weight = a-c*x0+(b+c)*age; 

defines two models conditional on the estimated value x0. Here, weight is the dependent and 
age is the independent variable, and a, b, c and x0 are parameters to be estimated. 
 
SAS output: 
 

                   Dependent Variable weight 
                      Method: Gauss-Newton 
 
                        Iterative Phase 
                                                       Sum of 
Iter      a           b           c          x0        Squares 
 0     36.0000      4.0000     12.0000     21.0000     12219.0 
 1     33.2725      5.2770     12.5087     23.0491      2966.4 
 2     33.2725      5.2770     12.5087     22.9657      2961.0 
 
NOTE: Convergence criterion met. 
 
                         Sum of       Mean               Approx 
Source              DF   Squares     Square    F Value    Pr > F 
Regression          4   1408906     352226     293.91    <.0001 
Residual            5    2961.0      592.2 
Uncorrected Total   9   1411867 
Corrected Total     8    525131 
 
                             Approx      Approximate 95% Conf 
Parameter      Estimate    Std Error                Limits 
a               33.2725      21.2732    -21.4112     87.9563 
b                5.2770       1.6232      1.1043      9.4496 
c               12.5087       1.9605      7.4692     17.5483 
x0              22.9657       2.6485     16.1577     29.7738 
 
               Approximate Correlation Matrix 
 
             a             b             c              x0 
a        1.0000000    -0.8202762     0.6791740      -0.2808966 
b       -0.8202762     1.0000000    -0.8279821       0.5985374 
c        0.6791740    -0.8279821     1.0000000      -0.1413919 
x0      -0.2808966     0.5985374    -0.1413919       1.0000000 

 
Explanation: The title of the output indicates that the numerical method of estimation is by 
default Gauss-Newton. The first table describes iterations with the current estimates 
together with residual sums of squares. The output (NOTE: Convergence criterion met) 
indicates that the computation was successful in obtaining estimates of the parameters. The 
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next table presents an analysis of variance table including sources of variation (Regression, 
Residual, Uncorrected Total, Corrected Total), degrees of freedom (DF), Sums of Squares, 
Mean Squares, F Value and approximated P value (Approx Pr > F). The high F value 
suggests that the model explains growth of turkeys well. The next table shows the 
Parameter and their Estimates together with Approximate Standard Errors and Confidence 
Intervals. Note that the optimal knot, x0, was estimated to be at 22.9657 days. The last table 
presents approximate correlations among the parameter estimates. Figure 10.6 presents a 
graph of the segmented regression describing the growth of Zagorje turkey chicks using 
parameters from the SAS program. 
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Figure 10.6  Growth of Zagorje turkey described by a segmented regression and 
estimated knot: observed (•) and estimated ( _ ) values 

 
10.3.1.2 SAS Example for Segmented Regression with Plateau  

A SAS program using quadratic and linear segmented regression to estimate a nutrient 
requirement will be shown on the following example. The requirement is expected to be at 
the knot (x0) or joint of the regression segments.  

 
Example: Estimate the requirement for methionine from measurements of 0-3 week gain of 
turkey chicks. 
 

Gain, g/d: 102 108 125 133 140 141 142 137 138 
Methionine, % of NRC: 80 85 90 95 100 105 110 115 120 

 
The proposed functions are: 

yi = a + b xi + c xi
2
 for xi ≤ x0  

yi = a + b x0 + c x0
2
 for xi > x0 

which are joined in the knot x0. Here, a, b, and c denote parameter estimators. The knot, x0, 

is also unknown and will be estimated from the data but must satisfy 
c

bx
20 = . We can 

define x = methionine – 80 to initiate the function at methionine = 80 % of NRC to obtain a 
more explicit and practical function.  
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In order to start the iterative computation, prior (guessed) values of the parameter 
estimates must be defined. This can be done by inspection of the data. The possible knot is 
observed at a methionine value around 100 % of NRC and the corresponding gain is about 
140 g/d, thus giving x0 = 20 and plateau = 140 g/d.  

To estimate priors of the quadratic function, any three points from the data can be used, 
say the values of methionine of 80, 90 and 100 % of NRC with corresponding gains of 102, 
125 and 140 g/d, respectively. Note that the methionine values correspond to 0, 10 and 20 
values of x. Those values are entered into the proposed quadratic function resulting in three 
equations with a, b and c as the three unknowns: 

102 = a + b (80 – 80) + c (80 – 80)2
  

125 = a + b (90 – 80) + c (90 – 80)2
  

140 = a + b (100 – 80) + c (100 – 80)2
  

The solutions of those equations are: 

a = 102; b = 2.7; and c = –0.04. Those can be used as priors.  

 
SAS program: 
 
DATA a; 
INPUT met gain @@; 
DATALINES; 
 80  102    85  115    90  125    95  133   100  140 
105  141   110  142   115  140   120  142 
; 
PROC NLIN; 
      PARMS a = 102 b = 2.7 c = -0.04; 
      x = met-80; 
      x0 = -.5*b / c;        
IF x < x0 THEN          
         MODEL gain = a+b*x+c*x*x; 
      ELSE              
         MODEL gain = a+b*x0+c*x0*x0; 
 
      IF _obs_=1 and _iter_ =.  THEN DO; 
         plateau = a+b*x0+c*x0*x0; 
   x0 = x0+80; 
         PUT /  x0 = plateau=  ; 
         END; 
RUN; 

 
Explanation: The NLIN procedure is used. The PARMS statement defines parameters with 
their priors, which are needed to start the iterative numerical computation. Note the 
transformation of x = met – 80. This initiates the curve at methionine = 80 and gives it a 
more practical definition. 
The block of statements:  
IF x<x0 THEN         ; 
         MODEL gain=a+b*x+c*x*x; 
      ELSE              
         MODEL gain=a+b*x0+c*x0*x0; 
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defines two models conditional on the estimated value x0. Here, gain is the dependent and 
x = met - 80 is the independent variable, and a, b, c and x0 are parameters to be estimated. 
The last block of statements outputs the estimated knot and plateau values. Note the 
expression x0 = x0 + 80, which transforms knot values back to % of NRC units. 
 
SAS output: 
 
                     Iterative Phase 
                 Dependent Variable gain 
                   Method: Gauss-Newton 
 
                                                 Sum of 
   Iter           a           b           c     Squares 
      0       102.0      2.7000     -0.0400       125.9 
      1       102.0      2.8400     -0.0500      7.8313 
      2       101.8      2.9169     -0.0535      5.1343 
      3       101.8      2.9165     -0.0536      5.1247 
      4       101.8      2.9163     -0.0536      5.1247 
      5       101.8      2.9163     -0.0536      5.1247 
 
                NOTE: Convergence criterion met. 
 
                         Sum of       Mean               Approx 
Source             DF   Squares     Square    F Value    Pr > F 
Regression          3    156347    52115.6     957.58    <.0001 
Residual            6    5.1247     0.8541 
Uncorrected Total   9    156352 
Corrected Total     8    1640.9 
 
                       Approx 
Parameter  Estimate    Std Error  Approximate 95% Conf. Limits 
    a       101.8       0.8192      99.7621       103.8 
    b         2.9163    0.1351       2.5857      3.2469 
    c        -0.0536    0.00440     -0.0644     -0.0428 
 
x0=107.21473017 plateau=141.44982038 
 
           Approximate Correlation Matrix 
               a               b               c 
  a       1.0000000      -0.7814444       0.6447370 
  b      -0.7814444       1.0000000      -0.9727616 
  c       0.6447370      -0.9727616       1.0000000 

 
Explanation: The title of the output indicates that the numerical method of estimation is by 
default Gauss-Newton. The first table describes iterations with the current estimates 
together with residual sums of squares. The output (NOTE: Convergence criterion met) 
indicates that the computation was successful in obtaining estimates of the parameters.  The 
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next table presents an analysis of variance table including sources of variation (Regression, 
Residual, Uncorrected Total, Corrected Total), degrees of freedom (DF), Sums of Squares, 
MeanSquares, F Value and approximated P value (Approx Pr > F). The high F value 
suggests that the model explains gain of turkeys well. The next table shows the Parameter 
and their Estimates together with Approximate Standard Errors and 95% Confidence 
Limits. Note that the optimal knot, x0, was estimated to be at 107.214 % of NRC and the 
plateau at 141.4498 g. The last table presents approximate correlations among the parameter 
estimates. Figure 10.7 presents a graph of the segmented regression of gain of turkey chicks 
using the parameters from the SAS program. The functions are: 

gaini = 101.8 + 2.9163 (meti – 80) – 0.0536 (meti – 80)2
 for meti ≤ 107.214 

gaini = 141.44       for meti > 107.214 
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Figure 10.7  Gain of turkey chicks on methionine level shown with quadratic and plateau 
functions and estimated knot: observed (•) and estimated ( __ ) values 
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Chapter 11  
 
One-way Analysis of Variance 

Perhaps the most common use of statistics in animal sciences is for testing hypotheses about 
differences between two or more categorical treatment groups. Each treatment group 
represents a population. Recall that in a statistical sense a population is a group of units with 
common characteristics. For example, by feeding three diets three populations are defined, 
each made up of those animals that will be fed with those diets. Analysis of variance is used 
to determine whether those three populations differ in some characteristics like daily gain, 
variability, or severity of digestive problems.  

In testing differences among populations, a model is used in which measurements or 
observations are described with a dependent variable, and the way of grouping by an 
independent variable. The independent variable is thus a qualitative, categorical or 
classification variable and is often called a factor. For example, consider a study 
investigating the effect of several diets on the daily gain of steers and the steers can be fed 
and measured individually. Daily gain is the dependent, and diet the independent variable. 
In order to test the effect of diets, random samples must be drawn. The preplanned 
procedure by which samples are drawn is called an experimental design. A possible 
experimental design in the example with steers could be: choose a set of steers and assign 
diets randomly to them. That design is called a completely randomized design. Groups were 
determined corresponding to the different diets, but note that this does not necessarily mean 
physical separation into groups. Those groups are often called treatments, because in 
different groups the animals are treated differently.  

Consider an experiment with 15 animals and three treatments. Three treatment groups 
must be defined, each with five animals. The treatment to which an animal is assigned is 
determined randomly. Often it is difficult to avoid bias in assigning animals to treatments. 
The researcher may subconsciously assign better animals to the treatment he thinks is 
superior. To avoid this, it is good to assign numbers to the animals, for example from 1 to 
15, and then randomly choose numbers for each particular treatment. The following scheme 
describes a completely randomized design with three treatments and 15 animals. The 
treatments are denoted with T1, T2 and T3: 
 

Steer number 1 2 3 4 5 6 7 8 
Treatment T2 T1 T3 T2 T3 T1 T3 T2 
Steer number 9 10 11 12 13 14 15  
Treatment T1 T2 T3 T1 T3 T2 T1  

 
For clarity, the data can be sorted by treatment: 
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Treatments 
T1 T2 T3 

Steer Measurement Steer Measurement Steer Measurement 
2 y11 1 y21 3 y31 
6 y12 4 y22 5 y32 
9 y13 8 y23 7 y33 

12 y14 10 y24 11 y34 
15 y15 14 y25 13 y35 

 
Here, y11, y12,..., y35, or generally yij denotes experimental unit j in the treatment i. 
 
In the example of diets and steers, each sample group fed a different diet (treatment) 
represents a sample from an imaginary population fed with the same diet. Differences 
among arithmetic means of treatment groups will be calculated, and it will be projected if 
the differences can be expected in a large number of similar experiments. If the differences 
between treatments on experimental animals are significant, it can be concluded that the 
differences will be expected between populations, that is, on future groups of animals fed 
those diets. This is an example of a fixed effects model because the conclusions from the 
study apply to these specific diets.  

Another example: A study is conducted to determine the differences among dairy 
cows in milk yield that is due to different herds. A random sample of cows from a random 
sample of herds chosen among all herds is measured to determine if differences among 
means are large enough to conclude that herds are generally different. This second example 
demonstrates a random effects model because the herds measured are a random sample of 
all possible herds. 

In applying a completely randomized design or when groups indicate a natural way of 
classification, the objectives may be: 

1. Estimating the means  
2. Testing the difference between groups  

 
Analysis of variance is used for testing differences among group means by comparing 
explained variability, caused by differences among groups, with unexplained variability, 
that which remains among the measured units within groups. If explained variability is 
much greater than unexplained, it can be concluded that the treatments or groups have 
significantly influenced the variability and that the arithmetic means of the groups are 
significantly different (Figure 11.1). The analysis of variance partitions the total variability 
to its sources, that among groups versus that remaining within groups, and analyzes the 
significance of the explained variability. 

When data are classified into groups according to just one categorical variable, the 
analysis is called one-way analysis of variance. Data can also be classified according to two 
or more categorical variables. These analyses are called two-way, three-way, …, multi-way 
analyses of variance.  
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a) b)

Group 1 Group 2 Group 1 Group 2

 
Figure 11.1  Differences between means of group 1 and group 2: a) variability within 
groups is relatively small; b) variability within groups is relatively large. The difference 
between groups is more obvious when the variability within groups is small comparing to 
the variability between groups 

 

11.1 The Fixed Effects One-way Model  

The fixed effects one-way model is most often applied when the goal is to test differences 
among means of two or more populations. Populations are represented by groups or 
treatments each with its own population mean. The effects of groups are said to be fixed 
because they are specifically chosen or defined by some nonrandom process. The effect of 
the particular group is fixed for all observations in that group. Differences among 
observations within group are random. These inferences about the populations are made 
based on random samples drawn from those populations. The one-way model is: 

yij = µ + τi + εij i = 1,...,a;  j = 1,...,n 

where: 
yij = observation j in group or treatment i  
µ = the overall mean 
τi = the fixed effect of group or treatment i (denotes an unknown parameter) 
εij = random error with mean 0 and variance σ2 

 

The independent variable τ, often called a factor, represents the effects of different 
treatments. The factor influences the values of the dependent variable y. 
 
The model has the following assumptions: 

E(εij) = 0,  the expectations of errors are zero 
Var(εij) = σ2, the variance of errors are constant across groups (homogeneous) 
Usually, it is also assumed that errors have a normal distribution 
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From the assumptions it follows: 

E(yij) = µ + τi = µi, the expectation of an observation yij is its group mean µi  
Var(yij) = σ2, the variance of yi is constant across groups (homogeneous) 

 
Let the number of groups be a. In each group there are n measurements. Thus, there is a 
total of N = (n a) units divided into a groups of size n. A model that has an equal number of 
observations in each group is called balanced. For the unbalanced case, there is an unequal 
number of observations per group, ni denotes the number of observations in group i, and the 

total number of observations is N = Σi ni, (i = 1,…, a). 
For example, for three groups of five observations each, observations can be shown 

schematically: 
 

Group 
G1 G2 G3 

y11 y21 y31 
y12 y22 y32 
y13 y23 y33 
y14 y24 y34 
y15 y25 y35 

 
It can be shown, by using either least squares or maximum likelihood estimation, that 
population means are estimated by arithmetic means of the sample groups ( .iy ). The 
estimated or fitted values of the dependent variable are:  

.ˆˆˆˆ iiiij yy =+== τµµ  i = 1,...,a;  j = 1,...,n 

where: 
=ijŷ  the estimated (fitted) value of the dependent variable 
=iµ̂  the estimated mean of group or treatment i  
=µ̂  the estimated overall mean 
=iτ̂  the estimated effect of group or treatment i  
.iy  = the arithmetic mean of group or treatment i  

 
While iµ̂  has a unique solution ( .iy ), there are no separate unique solutions for µ̂  and iτ̂ . 

A reasonable solution can be obtained by using a constraint 0ˆ =∑i iinτ , where ni is the 

number of observations of group or treatment i. Then: 

..ˆ y=µ  

...ˆ yyii −=τ  

Also, iijij ye µ̂−=  = residual 
Thus, each measurement j in group i in the samples can be represented as: 

ijiij ey += µ̂  
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11.1.1 Partitioning Total Variability 

Analysis of variance is used to partition total variability into that which is explained by 
group versus that unexplained, and the relative magnitude of the variability is used to test 
significance. For a one-way analysis, three sources of variability are defined and measured 
with corresponding sums of squares:  
 

Source of variability Sum of squares 

Total variability 
- spread of observations about the  
   overall mean 

∑∑ −=
i j ijTOT yySS 2..)(  =  

= total sum of squares equal to the sum of 
squared deviations of observations from 
the overall mean.  

Here, 
N

y
y i j ij∑∑

=..  = mean of all 

observations ij, N = total number of 
observations 

Variability between groups or treatments 
- explained variability 
- spread of group or treatment means 
   about the overall mean 

∑∑∑ −=−=
i iii j iTRT yynyySS 22 ..).(..).(

= sum of squares between groups or 
treatments known as the group or 
treatment sum of squares, equal to the 
sum of squared deviations of group or 
treatment means from the total mean.  

Here,  .
i

j ij

i n

y
y

∑
=  = mean of group i, 

ni = number of observations of group i  

Variability within groups or treatments 
- variability among observations 
- unexplained variability  
- spread of observations about the group or
   treatment means 

∑ ∑ −=
i j iijRES yySS 2.)(  =  

= sum of squares within groups or 
treatments, known as the residual sum of 
squares or error sum of squares, equal to 
the sum of squared deviations of 
observations from the group or treatment 
means 

 
The deviations of individual observations from the overall mean can be partitioned into the 
deviation of the group mean from the overall mean plus the deviation of the individual 
observation from the group mean: 

.)(..).(..)( iijiij yyyyyy −+−=−  

Analogously, it can be shown that the overall sum of squares can be partitioned into the sum 
of squares of group means around the overall mean plus the sum of squares of the individual 
observations around the group means:  

∑∑∑∑∑∑ −+−=−
i j iiji j ii j ij yyyyyy 222 .)(..).(..)(  
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By defining:  

∑ ∑ −=
i j ijTOT yySS 2..)(  

∑ ∑ −=
i j iTRT yySS 2..).(  

∑ ∑ −=
i j iijRES yySS 2.)(  

it can be written: 

SSTOT = SSTRT + SSRES  

 
Similarly, the degrees of freedom can be partitioned: 

Total  Group or treatment Residual 
(N – 1) = (a – 1) + (N – a) 

 
where: 

N = the total number of observations 
a = the number of groups or treatments 

 
Sums of squares can be calculated using a shortcut calculation presented here in five steps: 

1) Total sum = sum of all observations: 

Σi Σj yij  

2) Correction for the mean:  

( )
==

∑ ∑
N

y
C i j ij

2

nsobservatio ofnumber   total
 sum)(total 2

 

3) Total (corrected) sum of squares:  

∑∑ −=
i j ijTOT CySS 2  = Sum of all squared observations minus C 

4) Group or treatment sum of squares:  

( )
C

n

y
SS

i
i

j ij
TRT −= ∑

∑ 2

 = Sum of ( )
e group siz

group sum 2

 for each group minus C 

5) Residual sum of squares:  

SSRES = SSTOT – SSTRT 

By dividing the sums of squares by their corresponding degrees of freedom, mean squares 
are obtained: 
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Group or treatment mean square: 
1−

=
a
SSMS TRT

TRT  

Residual mean square: 2s
aN

SSMS RES
RES =

−
= , which is the estimator of Var(εij) = σ2, the 

variance of errors in the population.  
The variance estimator (s2) is also equal to the mean of the estimated group variances 

(s2
i): 

a

s
s i i∑=

2
2  

For unequal numbers of observations per group (ni): 

∑
∑

−

−
=

i i

i ii

n

sn
s

)1(

)1( 2
2  

 
 
11.1.2 Hypothesis Test - F Test 

Hypotheses of interest are about the differences between population means. A null 
hypothesis H0 and an alternative hypothesis H1 are stated: 

H0: µ1 = µ2 = ... = µa , the population means are equal 
H1: µi ≠ µi’, for at least one pair (i,i’), the means are not equal 

The hypotheses can also be stated: 

H0: τ1 = τ2 =... = τa , there is no difference among treatments, i.e. there is no effect 
of treatments  

H1: τi  ≠ τi’, for at least one pair (i,i’) a difference between treatments exists 

An F statistic is defined using sums of squares and their corresponding degrees of freedom. 
It is used to test whether the variability among observations is of magnitude to be expected 
from random variation or is influenced by a systematic effect of group or treatment. In other 
words, is the variability between treatments groups significantly greater than the variability 
within treatments? The test is conducted with an F statistic that compares the ratio of 
explained and unexplained variability: 

F = (explained variability) /(unexplained variability) 

To justify using an F statistic, the variable y must have a normal distribution. Then the ratio: 

2σ
RESSS  

has a chi-square distribution with (N – a) degrees of freedom. The ratio:  

2σ
TRTSS  
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has chi-square distribution with (a – 1) degrees of freedom if there is no difference between 
treatments (H0 holds). Also, it can be shown that SSTRT and SSRES are independent. A ratio of 
two chi-square variables divided by their degrees of freedom gives an F statistic:  

)()/(
)1()/(

2

2

aNSS
aSSF

RES

TRT

−
−

=
σ
σ  

with an F distribution if H0 holds. 
 
Recall that: 

TRT
TRT MS

a
SS

=
−1

 = treatment mean square  

RES
RES MS

aN
SS

=
−

 = residual mean square  

Thus, the F statistic is: 

RES

TRT

MS
MSF =  

with an F distribution with (a – 1) and (N – a) degrees of freedom if H0 holds.  
 
It can be shown that the expectations of the mean squares are: 

E(MSRES) = σ2  

 
0

0
2

2

not  if
 if

      )(
H

H
MSE TRT





>
=

σ
σ

 

With a constraint that Σi τi = 0:  

E(MSTRT) = 
1

2
2

−
+ ∑

a
n

i iτ
σ  

Thus, MSRES is an unbiased estimator of σ2 regardless of H0, and MSTRT is an unbiased 
estimator of σ2 only if H0 holds.  

If H0 is true, then MSTRT ≈ σ2 and F ≈ 1. If H1 is true, then MSTRT > σ2 and F > 1. This 
also indicates that MSTRT is much greater than MSRES. The H0 is rejected if the calculated F is 
“large”, that is if the calculated F is much greater than 1. For the α  level of significance, H0 
is rejected if the calculated F from the sample is greater than the critical value, 
F > Fα,(a-1),(N-a) (Figure 11.2).  
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Fα,(a-1),(N-a) 

F1 F0 F

f(F) 

 
Figure 11.2  Test of hypotheses using an F distribution. If the calculated 
F = F0 < Fα,(a-1),(N-a), H0 is not rejected. If the calculated F= F1 > Fα,(a-1),(N-a), H0 is rejected 
with α level of significance 

 
Usually the sums of squares, degrees of freedom, mean squares and calculated F are written 
in a table called an analysis of variance or ANOVA table: 
 

Source  SS df MS = SS / df  F 
Group 
   or 
Treatment 

SSTRT a – 1 MSTRT = SSTRT / (a – 1) F = MSTRT / MSRES 

Residual  SSRES N – a MSRES = SSRES / (N – a)  
Total SSTOT N – 1   

 
 
Example: An experiment was conducted to investigate the effects of three different diets on 
daily gains (g) in pigs. The diets are denoted with TR1, TR2 and TR3. Five pigs were fed each 
diet. Data, sums and means are presented in the following table: 
 

 TR1 TR2 TR3  
 270 290 290  
 300 250 340  
 280 280 330  
 280 290 300  
 270 280 300 Total 

Σ 1400 1390 1560 4350 

n 5 5 5 15 
y  280 278 312 290 

 
For calculation of sums of squares the short method is shown:  
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1) Total sum: 

Σi Σj yij = (270 + 300 + ...+ 300) = 4350 

2) Correction for the mean: 

( ) ( ) 1261500
15

4350 2
2

===
∑ ∑

N

y
C i j ij

 

3) Total (corrected) sum of squares:  

SSTOT = Σi Σj yij
2 – C = (2702 + 3002 + ......+ 3002) – C =  

          = 1268700 – 1261500 = 7200 

4) Treatment sum of squares:  

( )
C

n

y
SS

i
i

j ij
TRT −= ∑

∑ 2

=  

          364012615001265140
5

1560
5

1390
5

1400 222

=−=−++= C  

5) Residual sum of squares:  

SSRES = SSTOT – SSTRT = 7200 – 3640 = 3560 

ANOVA table: 
 

Source  SS df MS F 
Treatment 3640 3 – 1=2 1820.00 6.13 
Residual  3560 15 – 3 = 12 296.67  
Total 7200 15 – 1 = 14   

13.6
67.296
0.1820

===
RES

TRT

MS
MSF  

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8
3.89 6.13

f (F )

F 2,12

α  = 0.05

 
Figure 11.3  F test for the example of effect of pig diets 
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The critical value of F for 2 and 12 degrees of freedom and 0.05 level of significance is 
F0.05,2,12 = 3.89 (See Appendix B: Critical values of F distribution). Since the calculated 
F = 6.13 is greater (more extreme) than the critical value, the H0 is rejected supporting the 
conclusion that there is a significant difference between at least two treatments means 
(Figure 11.3).  
 
 
11.1.3 Estimation of Group Means 

Estimators of the population means (µi) are arithmetic means of groups or treatments ( .iy ). 
Estimators can be obtained by least squares or maximum likelihood methods, as previously 
shown for linear regression.  
 
According to the central limit theorem, estimators of the means are normally distributed 

with mean µi and standard deviation 
i

RES
y n

MSs =
1

. Here, MSRES is the residual mean 

square, which is an estimate of the population variance, and ni is the number of observations 
in treatment i. Usually the standard deviation of estimators of the mean is called the 
standard error of the mean. Confidence intervals for the means can be calculated by using a 
student t distribution with N – a degrees of freedom. A 100(1 - α)% confidence interval for 
the group or treatment i is: 

i

RES
aNi n

MSty −± ,2/. α  

 
 
Example: From the example with pig diets, calculate a confidence interval for diet TR1. 
As previously shown: MSRES = 296.67; ni = 5; 280.1 =y  
 
The standard error is: 

70.7
5

67.296
1

===
i

RES
y n

MSs  

tα/2, N-a = t0.025, 12 = 2.179 (Appendix B, Critical values of t distributions) 
The 95% confidence interval is: 

280 ± (2.179)(7.70) or is equal to: 
280 ± 16.78 

 
 
11.1.4 Maximum Likelihood Estimation 

The parameters µi and σ2 can alternatively be estimated by using maximum likelihood (ML) . 
Under the assumption of normality, the likelihood function is a function of the parameters 
for a given set of N observations: 
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( )∑ ∑=
−−









i j iij
N

y

i eyL
22

2
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2

12 )|,(
σµ

πσ
σµ  

The log likelihood is: 

( ) ( )
( )

2

2

22

2
2

22
)|,(

σ

µ
πσσµ

∑ ∑ −
−−−= i j iij

i

y
logNlogNylogL  

A set of estimators chosen to maximize the log likelihood function is called the maximum 
likelihood estimators. The maximum of the function can be determined by taking the partial 
derivatives of the log likelihood function with respect to the parameters: 

( ) ( )2 
2

1)|,( 
2

2

−−−= ∑ j iij
i

i yyLlog
µ

σ∂µ
σµ∂  

( )∑ ∑ −+−=
i j iij

i yNyLlog 2
422

2

2
1

2
)|,( 

µ
σσ∂σ

σµ∂  

These derivatives are equated to zero in order to find the estimators iµ̂  and 2ˆMLσ . Note that 
the second derivative must be negative when parameters are replaced with solutions. The 
ML estimators are: 

.ˆ ii y=µ  

( )∑ ∑ −==
i j iijNML yys 2122 .σ̂  

The ML estimator for the variance is biased, i.e. E(s2
ML) ≠ σ 2. An unbiased estimator is 

obtained when the maximum likelihood estimator is multiplied by N / (N - a), that is:  

22
MLs

aN
Ns
−

=  

 
 
11.1.5 Likelihood Ratio Test 

The hypothesis H0: µ1 = µ2 = ... = µa can be tested using likelihood functions. The values of 
likelihood functions are compared using estimates for H0 and H1. Those estimates are 
maximums of the corresponding likelihood functions.  
 
The likelihood function under H0 is:  

( )∑ ∑








=
−−

i j ijy

N eyL
22 2 

2

2

2

1)|,(
σµ

πσ
σµ  

and the corresponding maximum likelihood estimators are:  

..ˆ 0_ y
n

y
i j ij

ML ==
∑∑

µ  
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N

yy
s i j ij

MLML
∑ ∑ −

==
2

2
0_

2
0_

..)(
σ̂  

Using the estimators for H0, the maximum of the likelihood function is:  

( )∑ ∑








=
−−

i MLj ij syy

N

ML

ML e
s

ysyL
2
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0_

2

1)|..,(
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The likelihood function when H0 is not true is: 

( )∑ ∑








=
−−

i j iijy

Ni eyL
22 2 

2

2

2

1)|,(
σµ

πσ
σµ  

and the corresponding maximum likelihood estimators are:  

.ii y=µ  

( )∑ ∑ −==
i j iijNMLML yys 212

1_
2

1_ .σ̂  

Using the estimators for H1, the maximum of the likelihood function is:  

( )∑ ∑








=
−−

i MLj iij syy

N

ML
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s

ysyL
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The likelihood ratio is: 

)|.,(
)|..,(

2
1_

2
0_

ysyL
ysyL

Λ
MLi

ML=  

Further, the logarithm of this ratio multiplied by (–2) has an approximate chi-square 
distribution with N – a degrees of freedom, where N and a are the total number of 
observations and number of groups, respectively:  

[ ])|.,()|..,(2
)|.,(
)|..,(

22 2
1_

2
0_2

1_

2
0_ ysyLlogysyLlog

ysyL
ysyL

logΛlog MLiML
MLi

ML −−=−=−  

For the significance level α, H0 is rejected if –2logΛ > χ2
N-a, where χ2

N-a is a critical value. 
Assuming the variance σ 2 is known, then:  

[ ]),|.(),|..(22 22 yyLlogyyLlogΛlog i σσ −−=−  

( ) ( ) ( ) ( )








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
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−−−=−
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2
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And as shown previously: 

( ) TOTi j ij SSyy =−∑∑ 2..  = the total sum of squares 

( ) RESi j iij SSyy =−∑∑ 2.  = the residual sum of squares 

SSTRT = SSTOT – SSRES = the treatment sum of squares 

Thus:  





=− 22

σ
TRTSSΛlog  

Estimating σ 2 from the one-way model as 
aN

SSMSs RES
RES −

==2 , and having 
1−

=
a
SSMS TRT

TRT , 

note that asymptotically –2logΛ divided by the degrees of freedom (a – 1) is equivalent to 
the F statistic as shown before.  
 
 
11.1.6 Multiple Comparisons among Group Means  

An F test is used to conclude if there is a significant difference among groups or treatments. 
If H0 is not rejected, it is not necessary or appropriate to further analyze the problem, 
although the researcher must be aware of the possibility of a type II error. If, as a result of 
the F test, H0 is rejected, it is appropriate to further question which treatment(s) caused the 
effect, that is, between which groups is the significant difference found. 

Let µi = µ + τi  and  µi’ = µ + τi’  be the means of populations represented by the group 
designations i and i’. The question is whether the means of the two populations i and i’, 
represented by the sampled groups i and i’, are different. For an experiment with a groups 

or treatments there is a total of 







2
a

 pair-wise comparisons of means. For each comparison 

there is a possibility of making a type I or type II error. Recall that a type I error occurs 
when H0 is rejected and actually µi = µi’. A type II error occurs when H0 is not rejected but 
actually µi ≠ µi'. Looking at the experiment as a whole, the probability of making an error in 
conclusion is defined as the experimental error rate (EER):  

EER = P(at least one conclusion µi ≠ µi’, but actually all µi are equal) 

There are many procedures for pair-wise comparisons of means. These procedures differ in 
EER. Here, two procedures, the Least Significance Difference and Tukey tests, will be 
described. Others, not covered here include Bonferoni, Newman-Keuls, Duncan, Dunnet, 
etc. (See for example, Snedecor and Cochran , 1989 or Sokal and Rohlf, 1995) 
 
 
11.1.6.1 Least Significance Difference (LSD) 

The aim of this procedure is to determine the least difference between a pair of means that 
will be significant and to compare that value with the calculated differences between all 
pairs of group means. If the difference between two means is greater than the least 
significant difference (LSD), it can be concluded that the difference between this pair of 
means is significant. The LSD is computed: 
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



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MStLSD α  
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RES s

nn
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






+  = standard error of the estimator of the difference 

between the means of two groups or treatments i and i’. 
An advantage of the LSD is that it has a low level of type II error and will most likely 

detect a difference if a difference really exists. A disadvantage of this procedure is that it 
has a high level of type I error. Because of the probability of type I error, a significant F test 
must precede the LSD in order to ensure a level of significance α for any number of 
comparisons. The whole procedure of testing differences is as follows: 

1) F test (H0: µ1 = ... = µa, H1: µi ≠ µi’ for at least one pair i,i’) 
2) if H0 is rejected then  the LSDii’ is calculated for all pairs i,i’ 
3) conclude µi ≠ µi’ if '' iiii LSDyy ≥−   

 
 
11.1.6.2 Tukey Test  

The Tukey test uses a q statistic that has a Q distribution (the studentized range between the 
highest and lowest mean). The q statistic is defined as:  

ns
yyq Max min−

=  

A critical value of this distribution, qα,a,N-a, is determined with a level of significance α, the 
number of groups a, and error degrees of freedom N – a (See Appendix B: Critical values of 
the studentized range). A Tukey critical difference, also known as the honestly significant 
difference (HSD), is computed from:  

t

RES
aNa n

MSqHSD −= ,,α  

Here, MSRES is the residual mean square and nt is the group size. It can be concluded that the 
difference between means of any two groups iy  and 'iy  is significant if the difference is 
equal to or greater than the HSD ( '''     when iiiiii HSDyy ≥−≠ µµ ). To ensure an 
experimental error rate less or equal to α, an F test must precede a Tukey test. Adjustment 
of a Tukey test for multiple comparisons will be shown using SAS in section 11.1.8. 

If the number of observations per group (nt) is not equal, then a weighted number can 
be used for nt:  

)(
1

1
2

N

n
N

a
n i i

t
∑−

−
=  

where N is the total number of observations and ni is number of observations for group i. 
Alternatively, the harmonic mean of ni can be used for nt.  
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An advantage of the Tukey test is that it has fewer incorrect conclusions of µi ≠ µi’ 
(type I errors) compared to the LSD; a disadvantage is that there are more incorrect µi = µi’ 
conclusions (type II errors). 
 
 
Example: Continuing with the example using three diets for pigs, it was concluded that a 
significant difference exists between group means, leading to the question of which of the 
diets is best. By the Tukey method: 

t

RES
aNa n

MSqHSD −= ,,α  

Taking: 
q3,12 = 3.77 (See Appendix B: Critical values of studentized range) 
MSRES = 296.67 
nt = 5 

The critical difference is: 

0.29
5

67.29677.3 ==HSD  

 For convenience all differences can be listed in a table.  
 

Treatments iy  TR1 
280 

TR2 
278 

TR3 312 32 34 
TR1 280 - 2 
TR2 278 - - 

 
The differences between means of treatments TR3 and TR1, and TR3 and TR2, are 32.0 and 
34.0, respectively, which are greater than the critical value HSD = 29.0. Therefore, diet TR3 
yields higher gains than either diets TR1 or TR2 with α = 0.05 level of significance.  

This result can be presented graphically in the following manner. The group means are 
ranked and all groups not found to be significantly different are connected with a line: 

      TR3        TR1     TR2 
 

 
Alternatively, superscripts can be used. Means with no superscript in common are 
significantly different with α = 0.05 
 

 Treatment 
 TR1 TR2 TR3 

Mean daily gain (g) 280a 278a 312b 
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11.1.6.3 Contrasts 

The analysis of contrasts is also a way to compare group or treatment means. Contrasts can 
also be used to test the difference of the mean of several treatments on one side against the 
mean of one or more other treatments on the other side. For example, suppose the objective 
of an experiment was to test the effects of two new rotational grazing systems on total 
pasture yield. Also, as a control, a standard grazing system was used. Thus, a total of three 
treatments were defined, a control and two new treatments. It may be of interest to 
determine if the rotational systems are better than the standard system. A contrast can be 
used to compare the mean of the standard against the combined mean of the rotational 
systems. In addition, the two rotational systems can be compared to each other. Consider a 
model: 

yij = µ + τi + εij i = 1,...,a j = 1,...,n 

a contrast is defined as  

Γ = Σi λi τi  

or 

Γ = Σi λi µi 

where: 
τi = the effect of group or treatment i  
µi = µ + τi = the mean of group or treatment i  
λi = contrast coefficients which define a comparison  

The contrast coefficients must sum to zero: 

Σi λi = 0 

For example, for a model with three treatments in which the mean of the first treatment is 
compared with the mean of the other two, the contrast coefficients are: 

λ1 = 2 
λ2 = –1 
λ3 = –1 

An estimate of the contrast is:  

∑=
i iiΓ µλ ˆˆ  

Since in a one-way ANOVA model, the treatment means are estimated by arithmetic means, 
the estimator of the contrast is: 

∑=
i ii yΓ .ˆ λ  

Hypotheses for contrast are: 

H0: Γ = 0 
H1: Γ ≠ 0  



Chapter 11  One-way Analysis of Variance  221 

 

The hypotheses can be tested using an F statistic: 

RES

Γ

MS
SS

F
1ˆ=  

which has an F1,(N-a) distribution. Here, 
∑

=
i ii

Γ n
ΓSS

/

ˆ
2

2

ˆ λ
 is the contrast sum of squares, and 

1Γ̂SS  is the contrast mean square with 1 degree of freedom. 
 
 
Example: In the example of three diets for pigs, the arithmetic means were calculated: 

280.1 =y , 278.2 =y  and 312.3 =y  
A contrast can be used to compare the third diet against the first two. 
 
The contrast coefficients are:  

λ1 = –1, λ2 = –1 and λ3 = 2 

The estimated contrast is: 

∑ =+−+−==
i ii yΓ 66)312)(2()278)(1()280)(1(.ˆ λ  

The MSRES = 296.67 and ni = 5. The contrast sum of squares is: 

( ) ( ) ( )
3630

525151
)66(

/

ˆ
222

2

2

2

ˆ =
+−+−

==
∑i ii

Γ n
ΓSS
λ

 

The calculated F value is: 

236.12
67.296

136301ˆ ===
RES

Γ

MS
SS

F   

The critical value for 0.05 level of significance is F0.05,1,12 = 4.75. Since the calculated F is 
greater than the critical value, H0 is rejected. This test provides evidence that the third diet 
yields greater gain than the first two.  
 
 
11.1.6.4 Orthogonal contrasts 

Let Γ̂ 1 and Γ̂ 2 be two contrasts with coefficients λ1i and λ2i. The contrasts Γ̂ 1 and Γ̂ 2 
are orthogonal if: 

Σi λ1i λ2i = 0 

Generally, a model with a groups or treatments and (a – 1) degrees of freedom can be 
partitioned to (a – 1) orthogonal contrasts such that:  

ii ΓTRT SSSS ∑= ˆ   i = 1,…,(a – 1) 
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that is, the sum of a complete set of orthogonal contrast sum of squares is equal to the 
treatment sum of squares. From this it follows that if a level of significance α is used in the 
F test for all treatments, then the level of significance for singular orthogonal contrasts will 
not exceed α, thus, type I error is controlled.  
 
 
Example: In the example of three diets for pigs the following orthogonal contrasts can be 
defined: the third diet against the first two, and the first diet against the second.  
Previously it was computed: MSRES = 296.67; SSTRT = 3640; ni = 5  
 
The contrast coefficients are: 
 

 TR1 TR2 TR3 
.iy  280 278 312 

Contrast1 λ11 = 1 λ12 = 1 λ13 = –2 
Contrast2 λ21 = 1 λ22 = –1 λ23 = 0 

 
The contrasts are orthogonal because:  

Σi λ1i λ2i = (1)(1) + (1)(–1) + (–2)(0) = 0 

The contrasts are: 

66)312)(2()278)(1()280)(1(ˆ
1 −=−++=Γ  

2)312)(0()278)(1()280)(1(ˆ
2 =+−+=Γ  

The contrast sums of squares: 

( ) ( ) ( )
3630

525151
)66(

/

ˆ
222

2

2

2
1

ˆ1
=

−++
−

==
∑i ii

Γ n
ΓSS
λ

 

( ) ( )
10

5151
)2(

/

ˆ
22

2

2

2
2

ˆ2
=

−+
==

∑i ii
Γ n

ΓSS
λ

 

Thus: 

TRTΓΓ SSSSSS =+
21 ˆˆ  = 3630 + 10 = 3640  

The corresponding calculated F values are: 

236.12
67.296

136301
1ˆ

1 ===
RES

Γ

MS

SS
F  

034.0
67.296
1101

2ˆ
2 ===

RES

Γ

MS

SS
F   
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ANOVA table: 
 

Source  SS df MS F 
Diet 3640 3 – 1 = 2 1820.00 6.13 
     (TR1, TR2) vs. TR3 3630 1 3630.00 12.23 
     TR1 vs. TR2 10 1 10.00 0.03 
Residual  3560 15 – 3 = 12 296.67  
Total 7200 15 – 1 = 14   

 
The critical value for 1 and 12 degrees of freedom and α = 0.05 is F.05,1,12 = 4.75. Since the 
calculated F for TR1 and TR2 vs. TR3, F = 12.23, is greater than the critical value, the null 
hypothesis is rejected, the third diet results in higher gain than the first two. The second 
contrast, representing the hypothesis that the first and second diets are the same, is not 
rejected, as the calculated F for TR1 vs. TR2, F = 0.03 is less than F.05,1,12 = 4.75.  
 
 
In order to retain the probability of type I error equal to the α used in the tests, contrasts 
should be constructed a priori. Contrasts should be preplanned and not constructed based on 
examination of treatment means. Further, although multiple sets of orthogonal contrasts can 
be constructed in analysis with three or more treatment degrees of freedom, only one set of 
contrasts can be tested to retain the probability of type I error equal to α. In the example 
above one of the two sets of orthogonal contrast can be defined but not both: 










32

321

  vs.
,  vs.

TRTR
TRTRTR

  or   








31

312

  vs.
,  vs.

TRTR
TRTRTR

 

 
 
11.1.6.5 Scheffe Test 

By defining a set of orthogonal contrasts it is ensured that the probability of a type I error 
(an incorrect conclusion that a contrast is different than zero) is not greater than the level of 
significance α for the overall test of treatment effects. However, if more contrasts are tested 

at the same time using the test statistic 
RES

Γ

MS
SS

F
1ˆ= , the contrasts are not orthogonal, and 

the probability of type I error is greater than α. The Scheffe test ensures that the level of 
significance is still α by defining the following statistic: 

RES

Γ

MS
aSS

F
)1(ˆ −

=  

which has an F distribution with (a – 1) and (N – a) degrees of freedom. Here, a is the 

number of treatments, N is the total number of observations, 
∑

=
i ii

Γ n
ΓSS

/

ˆ
2

2

ˆ λ
 is the contrast 

sum of squares, MSRES is the residual mean square, λi are the contrast coefficients that define 
comparisons, and ∑=

i ii yΓ .ˆ λ  is the contrast. If the calculated F value is greater than the 



224  Biostatistics for Animal Science 

 

critical value Fα,(a-1)(N-a),  the null hypothesis that the contrast is equal to zero is rejected. This 
test is valid for any number of contrasts.  
 
 
Example: Using the previous example of pig diets, test the following contrasts: first diet vs. 
second, first diet vs. third, and second diet vs. third. The following were calculated and 
defined: MSRES = 296.67; SSTRT = 3640; ni = 5, a = 3. 
 
The following contrast coefficients were defined: 
 

 TR1 TR2 TR3 
.iy  280 278 312 

Contrast1 λ11 = 1 λ12 = –1 λ13 = 0 
Contrast2 λ11 = 1 λ12 = 0 λ13 = –1 
Contrast3 λ21 = 0 λ22 = 1 λ23 = –1 

 
 
The contrasts are: 

2)278)(1()280)(1(ˆ
1 =−+=Γ  

32)312)(1()280)(1(ˆ
2 −=−+=Γ  

34)312)(1()278)(1(ˆ
2 =−+=Γ  

The contrast sums of squares are: 

( ) ( )
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5151
)2(

/

ˆ
22

2

2

2
1

ˆ1
=

−+
==

∑i ii
Γ n

ΓSS
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( ) ( )
2560
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)32(

/

ˆ
22

2

2

2
2
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( ) ( )
2890

5151
)34(

/

ˆ
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2
2
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Note that TRTi Γ SSSS ≠∑ 1ˆ
 because of lack of orthogonality  

 
The F statistic is: 

RES

Γ

MS
aSS

F
)1(ˆ −

=  

The values of F statistics for contrasts are: 

017.0
67.296
210

1 ==F  

315.4
67.296

22560
2 ==F  
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871.4
67.296

22890
3 ==F  

The critical value for 2 and 12 degrees of freedom with α = 0.05 level of significance is 
F.05,2,12 = 3.89. The calculated F statistics for TR1 versus TR3 and TR2 versus TR3 are greater 
than the critical value, supporting the conclusion that diet 3 yields higher gain than either 
diet 1 or 2.  
 
 
11.1.7 Test of Homogeneity of Variance 

Homogeneity of variance in two groups or treatments, assuming normal distributions of 
observations, can be tested by using an F statistic:  

2
2

2
1

s
sF =   

as shown in section 6.8. For more than two groups or treatments, also assuming a normal 
distribution of observations, the Bartlett test can be used. The Bartlett formula is as follows: 

( ) ( ) ( ) ( )∑∑ −−−=
i iii i slognnslogB 22   11  i = 1,…, a  

where: 
2s = average of estimated variances of all groups 

s2
i = estimated variance for group i  

ni = the number of observations in group i  
a = the number of groups or treatments 

For unequal group sizes the average of estimated group variances is replaced by:  

∑
∑

−
=

i i

i i

n

SS
s

)1(
2

 

where SSi = sum of squares for group i  
 
For small group sizes (less than 10), it is necessary to correct B by dividing it by a 
correction factor CB:  

( ) ( )











−
−

−−
+=

∑∑
i i

i
i

B nna
C

1
1

1
1

13
11  

Both B and B/CB have approximate chi-square distributions with (a – 1) degrees of freedom. 
To test the significance of difference of variances, the calculated value of B or B/CB is 
compared to a critical value of the chi-square distribution (See Appendix B). 
 
Test of homogeneity of variance can also be done by using a Levene test, as shown in 
section 6.11.  
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11.1.8 SAS Example for the Fixed Effects One-way Model 

The SAS program for the example comparing three diets for pigs is as follows. Recall the 
data: 

 TR1 TR2 TR3 
 270 290 290 
 300 250 340 
 280 280 330 
 280 290 300 
 270 280 300 

 
SAS program: 
 
DATA pigs; 
       INPUT  diet $ d_gain @@; 
       DATALINES; 
TR1 270   TR2 290   TR3 290 
TR1 300   TR2 250   TR3 340 
TR1 280   TR2 280   TR3 330 
TR1 280   TR2 290   TR3 300 
TR1 270   TR2 280   TR3 300 

; 
PROC GLM DATA = pigs; 
CLASS diet; 
MODEL d_gain = diet  ; 
LSMEANS diet / P PDIFF TDIFF STDERR ADJUST=TUKEY; 
CONTRAST ‘TR1,TR2 : TR3’ diet 1 1 –2; 
CONTRAST ‘TR1 : TR2’  diet 1 -1 0; 
RUN; 

 
Explanation: The GLM procedure is used. The CLASS statement defines the classification 
(categorical) independent variable. The MODEL statement defines dependent and 
independent variables: d_gain = diet indicates that d_gain is the dependent, and diet the 
independent variable. The LSMEANS statement calculates means of diets. Options after the 
slash (P PDIFF TDIFF STDERR ADJUST=TUKEY) specify calculation of standard errors 
and tests of differences between least-squares means using the Tukey test adjusted for the 
multiple comparisons of means. Alternatively, for a preplanned comparison of groups, the 
CONTRAST statements can be used. The first contrast is TR1 and TR2 vs. TR3, and the 
second contrast is TR1 vs. TR2. The text between apostrophes ‘ ’ are labels for the contrasts, 
diet denotes the variable for which contrasts are computed, and at the end the contrast 
coefficients are listed. 
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SAS output: 
                        General Linear Models Procedure 
 
Dependent Variable: d_gain 
                                     Sum of            Mean 
Source            DF    Squares       Square    F Value     Pr > F 
Model              2   3640.0000    1820.0000      6.13     0.0146 
Error             12   3560.0000     296.6667 
Corrected Total   14   7200.0000 
 
   R-Square             C.V.        Root MSE         D_GAIN Mean 
   0.505556         5.939315       17.224014            290.00000 
 
               General Linear Models Procedure 
                     Least Squares Means 
          Adjustment for multiple comparisons: Tukey 
 
DIET         d_gain       Std Err     Pr > |T|   LSMEAN 
             LSMEAN        LSMEAN   H0:LSMEAN=0   Number 
 
TR1        280.000000      7.702813    0.0001       1 
TR2        278.000000      7.702813    0.0001       2 
TR3        312.000000      7.702813    0.0001       3 
 
        T for H0: LSMEAN(i)=LSMEAN(j) / Pr > |T| 
              i/j       1         2         3 
              1               0.9816    0.0310 
              2    0.9816               0.0223 
              3    0.0310    0.0223 
 
Dependent Variable: d_gain 
 
Contrast       DF   Contrast SS   Mean Square   F Value   Pr > F 
TR1,TR2 : TR3   1    3630.0000    3630.0000     12.24     0.0044 
TR1 : TR2       1      10.0000      10.0000      0.03     0.8574 

 
Explanation: The first table is an ANOVA table for the Dependent Variable d_gain. The 
Sources of variability are Model, Error and Corrected Total. In the table are listed degrees 
of freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P value 
(Pr > F). For this example F = 6.13 and the P value is 0.0146, thus it can be concluded that 
an effect of diets exists. Below the ANOVA table descriptive statistics are listed, including 
the R square (0.505556), coefficient of variation (C.V. =5.939315), standard deviation 
(Root MSE =17.224014) and overall mean (d-gain mean = 290.000). In the table titled 
Least Squares Means presented are estimates (LS Means)with Standard Errors. In the next 
table P values for differences among treatments are shown. For example, the number in the 
first row and third column (0.0310) is the P value for testing the difference between diets 
TR1 and TR3. The P value = 0.0310 indicates that the difference is significant. Finally, 
contrasts with contrast sum of squares (Contrast SS), Mean Squares, F and P values (F 
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Value, Pr > F) are shown. The means compared in the first contrast are significantly 
different, as shown with a P value = 0.0044, but the contrast between TR1 and TR2 is not, P 
value = 0.8574. Note the difference in that P value comparing to the Tukey test (0.8574 vs. 
0.9816) due to different tests.  
 
 
11.1.9 Power of the Fixed Effects One-way Model 

Recall that the power of test is the probability that a false null hypothesis is correctly 
rejected or a true difference is correctly declared different. The estimation of power for a 
particular sample can be achieved by setting as an alternative hypothesis the measured 
difference between samples. Using that difference and variability estimated from the 
samples, the theoretical distribution is set for H1, and the deviation compared to the assumed 
critical value. The power of test is the probability that the deviation is greater than the 
critical value, but using the H1 distribution. In the one-way analysis of variance, the null and 
alternative hypotheses are:  

H0: τ1 = τ2 =... = τa  
H1: τi  ≠ τi’ for at least one pair (i,i’) 

where τi are the treatment effects and a is the number of groups. 
 
Under the H0, the F statistic has a central F distribution with (a – 1) and (N – a) degrees of 
freedom. For the α level of significance, H0 is rejected if F > Fα,(a-1),(N-a), that is, if the 
calculated F from the sample is greater that the critical value Fα,(a-1),(N-a). When at least one 
treatment effect is nonzero, the F test statistic follows a non-central F distribution with a 

noncentrality parameter 2

2

σ

τ
λ ∑= i

n
, and degrees of freedom (a – 1) and (N – a). The 

power of the test is given by:  

Power = P (F > Fα,(a-1),(N-a) = Fβ) 

using a noncentral F distribution for H1.  

Using samples, n Σi τi2 can be estimated with SSTRT, and σ2 with s2 = MSRES. Then the 
noncentrality parameter is: 

RES

TRT

MS
SS

=λ  

Regardless of the complexity of the model, the power for treatments can be computed in a 
similar way by calculating SSTRT, estimating the variance, and defining appropriate degrees 
of freedom.  

The level of significance and power of an F test are shown graphically in Figure 11.4. 
The areas under the central and noncentral curves to the right of the critical value are the 
significance level and power, respectively. Note the relationship between significance level 
(α), power, difference between treatments (explained with SSTRT) and variability within 
treatments (explained with MSRES = s2). If a more stringent α is chosen, which means that 
critical value will be shifted to the right, the power will decrease. A larger SSTRT and smaller 
MSRES means a larger noncentrality parameter λ, and the noncentrality curve is shifted to the 
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right. This results in a larger area under the noncentrality curve to the right of the critical 
value and consequently more power. 
 

 
Figure 11.4  Significance and power of the F test. Under H0 the F statistic has a central F 
distribution and under H1 it has a noncentral F distribution. The distributions with 4 and 20 
degrees of freedom and noncentrality parameters λ = 0 and 5 are shown. The critical 
value for an α level of significance is Fα,4,20. The area under the H0 curve to the right of 
the critical value is the level of significance (α). The area under the H1 curve to the right of 
the critical value is the power (1 – β). The area under the H1 curve on the left of the critical 
value is the type II error (β). 

 
 
Example: Calculate the power of test using the example of effects of three diets on daily 
gains (g) in pigs. There were five pigs in each group. The ANOVA table was: 
 

Source  SS df MS F 
Treatment 3640 3 – 1 = 2 1820.00 6.13 
Residual  3560 15 – 3 = 12 296.67  
Total 7200 15 – 1 = 14   

 
The calculated F value was: 

13.6
67.296
0.1820

===
RES

TRT

MS
MSF  

The critical value for 2 and 12 degrees of freedom and 0.05 level of significance is 
F0.05,2,12 = 3.89. The calculated F = 6.13 is greater (more extreme) than the critical value and 
H0 is rejected. 
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The power of test is calculated using the critical value F0.05,2,12 = 3.89, and the noncentral F 

distribution for H1 with the noncentrality parameter 27.12
67.296

3640
===

RES

TRT

MS
SSλ  and 2 and 

12 degrees of freedom. The power is: 

Power = 1 – β = P[F > 3.89] = 0.79 

Calculation of power using a noncentral F distribution with SAS will be shown in section 
11.1.9.1. The level of significance and power for this example are shown graphically in 
Figure 11.5. 
 

 
Figure 11.5  Power for the example with pigs. The critical value is 3.89. The area under 
the H0 curve on the right of the critical value 3.89 is the level of significance α = 0.05. The 
area under the H1 curve on the right of 3.89 is the power 1 – β = 0.792 

 
 
11.1.9.1 SAS Example for Calculating Power 

To compute power of test with SAS, the following statements are used: 
 
DATA a; 
alpha=0.05; 
a=3; 
n=5; 
df1=a-1; 
df2=a*n-a; 
sstrt=3640; 
msres=296.67; 
lambda=sstrt/msres;  
Fcrit=FINV(1-alpha,df1,df2);   
power=1-CDF('F',Fcrit,df1,df2,lambda); 
PROC PRINT; 
RUN; 
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Explanation: First the following are defined: alpha = significance level, a = number of 
treatments, n = number of replications per treatment, df1 = treatment degrees of freedom, 
df2 = residual degrees of freedom, sstrt = treatment sum of squares, msres = residual (error) 
mean square, the estimated variance. Then, the noncentrality parameter (lambda), and the 
critical value (Fcrit) for the given degrees of freedom and level of significance are 
calculated. The critical value is computed with the FINV function, which must have the 
cumulative value of percentiles (1 – α = 0.95) and degrees of freedom df1 and df2. The 
power is calculated with the CDF function. This is a cumulative function of the F 
distribution that needs the critical value, degrees of freedom and the noncentrality parameter 
lambda. As an alternative to CDF('F',Fcrit,df1, df2,lambda), the statement 
PROBF(Fcrit,df1,df2,lambda) can be used. The PRINT procedure gives the following SAS 
output: 
 
alpha  a  n  df1  df2  sstrt    mse    lambda   Fcrit    power 
 
 0.05  3  5   2    12   3640  296.67  12.2695  3.88529  0.79213 

 
Thus, the power is 0.79213. 
 

11.2 The Random Effects One-way Model 

In a random effects model groups or treatments are defined as levels of a random variable 
with some theoretical distribution. In estimation of variability and effects of groups a 
random sample of groups from a population of groups is used. For example, data from few 
farms can be thought of as a sample from the population of ‘all’ farms. Also, if an 
experiment is conducted on several locations, locations are a random sample of ‘all’ 
locations.  

The main characteristics and differences between fixed and random effects are the 
following. An effect is defined as fixed if: there is a small (finite) number of groups or 
treatments; groups represent distinct populations, each with its own mean; and the 
variability between groups is not explained by some distribution. The effect can be defined 
as random if there exists a large (even infinite) number of groups or treatments; the groups 
investigated are a random sample drawn from a single population of groups; and the effect 
of a particular group is a random variable with some probability or density distribution. The 
sources of variability for fixed and random models of the one-way analysis of variance are 
shown in Figures 11.6 and 11.7. 
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Figure 11.6  Sources of variability for the fixed effects one-way model: 
total variability , variability within groups, variability between groups  

 

 
 

Figure 11.7  Sources of variability for the random effects one-way model: 
total variability , variability within groups, variability between groups  

 
There are three general types of models with regard to types of effects: 

1. Fixed effects model (all effects in the model are fixed) 
2. Random effects model (all effects in the model are random) 
3. Mixed effects model (some effects are fixed and some are random) 

 
The random effects one-way model is:  

yij = µ + τi + εij i = 1,..., a;  j = 1,..., n 

where: 

yij = an observation of unit j in group or treatment i  
µ = the overall mean 
τi = the random effect of group or treatment i with mean 0 and variance σ2

τ  
εij = random error with mean 0 and variance σ2 
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For the unbalanced case, that is unequal numbers of observations per group, ni denotes the 

number of observations in group i, and the total number of observations is N = Σi ni, 
(i = 1,…, a). 

 
The assumptions of the random model are: 

E(τi) = 0 
E(εij) = 0 
Var(τi) = σ2

τ  
Var(εij) = σ2 
τi and εij are independent, that is Cov(τi , εij) = 0 

Usually it is also assumed that τi and εij are normal: 

τi  ~ N(0, σ2
τ) 

εij ~ N(0, σ2) 

The variances σ2
τ and σ2 are between and within group variance components, respectively. 

From the assumptions it follows:  

E(yij) = µ   and  Var(yij) = σ2
τ + σ2 

That is: 

yij  ~ N(µ, σ2
τ + σ2) 

Also:  
Cov(yij , yij’) = σ2

τ 
Cov(τi , yij) = σ2

τ 

The covariance between observations within a group is equal to the variance between 
groups (for proof, see section 11.2.4). 
 
The expectation and variance of y for a given τi (conditional on τi ) are:  

E(yij| τi) = µ + τi    and     Var(yij| τi) = σ2  

The conditional distribution of y is: 

yij  ~ N(µ + τi, σ2) 

Possible aims of an analysis of a random model are: 
1. A test of group or treatment effects, the test of  

H0: σ2
τ = 0 

H1: σ2
τ ≠ 0 

2. Prediction of effects τ1,.., τa  
3. Estimation of the variance components 

 
 
11.2.1 Hypothesis Test 

Hypotheses for the random effects model are used to determine whether there is variability 
between groups: 
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H0: σ2
τ = 0 

H1: σ2
τ ≠ 0 

If H0 is correct, the group variance is zero, all groups are equal since there is no variability 
among their means. 
 
The expectations of the sums of squares are: 

E(SSRES) = σ2(N – a) 
E(SSTRT) = (σ2 + n σ2

τ)(a – 1) 

The expectations of the mean squares are: 

E(MSRES) = σ2  

0

0
22

2

not  if
 if

    )(
H

H
n

MSE TRT




+=
=

=
τσσ

σ
 

This indicates that the F test is analogous to that of the fixed model. The F statistic is: 

RES

TRT

MS
MSF =  

If H0 is correct then σ2
τ = 0 and F = 1. 

 
An ANOVA table is used to summarize the analysis of variance for a random model. It is 
helpful to add the expected mean squares E(MS) to the table: 
 
Source  SS df MS = SS / df  E(MS) 
Between groups or treatment SSTRT a – 1 MSTRT  σ2 + n σ2

τ 
Residual (within groups or 
treatments) SSRES N – a MSRES  σ2 

 

For the unbalanced cases n is replaced with 













−

−
∑

N

n
N

a
i i

2

1
1 . 

 
 
11.2.2 Prediction of Group Means 

Since the effects τi are random variables, they are not estimated, but their expectations are 
predicted, given the means estimated from the data ( ).| ii yE τ . This expectation can be 
predicted by using the following function of the random variable y: 

)ˆ.(ˆ .| µτ τ −= iyi yb
i

 

where: 
..ˆ y=µ  = estimator of the overall mean 

( )
( ) ii

ii
y nyVar

yCovb
i /.

.,
22

2

.| σσ
στ

τ

τ
τ +

==  = regression coefficient of τi on the arithmetic 

mean .iy  of group i  
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If variance components are unknown and must also be estimated, the expression for .| iybτ  is: 

i
y n

b
i /ˆˆ

ˆ
22

2

.| σσ
σ

τ

τ
τ +

=  

 
 
11.2.3 Variance Component Estimation 

Recall the ANOVA table for the random effects model: 
 
Source  SS df MS = SS / df  E(MS) 
Between groups or treatment SSTRT a – 1 MSTRT  σ2 + n σ2

τ 
Residual (within groups or 
treatments SSRES N – a MSRES  σ2 

Since from the ANOVA table: 

E(MSTRT) = σ2 + n σ2
τ  

E(MSRES) = σ2  

the mean squares can be equated to the estimators of the variance components: 
22 ˆˆ τσσ nMSTRT +=  

2σ̂=RESMS  

Rearranging: 

RESMS=2σ̂  
( ) ˆ 2

n
MSMS RESTRT −

=τσ  

where: 
 ˆ and ˆ 22

τσσ  = estimators of variance components 
n = the number of observations per treatment.  

For unbalanced data:  

( )  

1
1

ˆ
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2
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MSMS

i i

RESTRT
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where ni denotes the number of observations in group i, and the total number of 

observations is N = Σi ni, (i = 1 to a). 
These estimators are called ANOVA estimators. If assumptions of the model are not 

satisfied, and above all, if variances across groups are not homogeneous, estimates of the 
variance components and inferences about them may be incorrect.  
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Example: Progesterone concentration (ng/ml) was measured for eight sows to estimate 
variability within and between sows, and to determine if variability between sows is 
significant. Samples were taken three times on each sow. Data are presented in the 
following table. 
 

    Sow     
Measure 1 2 3 4 5 6 7 8 
 1 5.3 6.6 4.3 4.2 8.1 7.9 5.5 7.8 
 2 6.3 5.6 7.0 5.6 7.9 4.7 4.6 7.0 
 3 4.2 6.3 7.9 6.6 5.8 6.8 3.4 7.9 
Sum 15.8 18.5 19.2 16.4 21.8 19.4 13.5 22.7 

Total sum = 147.3 
 
 
By computing the sums of squares and defining the degrees of freedom as for a fixed model, 
the following ANOVA table can be constructed: 
 

Source  SS df MS  E(MS) 
Between sows 22.156 7 3.165 σ2 + 3 σ2

τ 
Within sows 23.900 16 1.494 σ2 

 
The estimated variance components are: 

494.1ˆ 2 =σ  

557.0
3

)494.1165.3(ˆ 2 =
−

=τσ   

F test: 

118.2
494.1
165.3

===
RES

TRT

MS
MSF   

Predicted values for sows are: 

)ˆ.(ˆ ., µτ τ −= iyi yb
i

 

The estimated overall mean is: 

138.6..ˆ == yµ  

The regression coefficient is: 

528.0
3/494.1557.0

557.0
/ˆˆ

ˆ
22
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σσ

σ

τ

τ
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The mean of sow 1 is: 

267.5.1 =y  
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The effect of sow 1 is: 

4600138626755280ˆ1 .).. (.τ −=−=  

The mean of sow 2 is: 

167.6.2 =y  

The effect of sow 2 is: 

0150138616765280ˆ2 .).. (.τ =−=  

Using the same formula, the effect of each sow can be predicted.  
 
 
11.2.4 Intraclass Correlation 

An intraclass correlation is a correlation between observations within a group or treatment. 
Recall that a correlation is a ratio of the covariance to the square root of the product of the 
variances: 

)()(

),(

',,

',,

jiji

jiji
t yVaryVar

yyCov
=ρ  

Also recall that the covariance between observations within a group is equal to the variance 
component between groups: 

Cov(yij,yij') = Var(τi) = στ
2  

The variance of any observation yij is: 

Var(yij) = Var(yij') = Var(y) = στ
2 + σ2 

These can be easily verified. Assume two observations in a group i:  

yij = µ + τi + εij  
yij' = µ + τi + εij'  

The covariance between two observations within the same group is: 

Cov(yij,yij') = Cov(µ + τi + εij, µ + τi + εij') = Var(τi) + Cov(εij, εij') = στ
2 + 0 = στ

2 

The variance of yij is: 

Var(yij) = Var(µ + τi + εij) = Var(τi) + Var(εij) = στ
2 + σ2 

Note that τi and εij are independent, the covariance between them is zero. The intraclass 
correlation is: 
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If the variance components are estimated from a sample, the intraclass correlation is: 
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Example: For the example of progesterone concentration of sows, estimate the intraclass 
correlation.  
 
The estimated variance components are: 

464.1ˆ 2 =σ  and 557.0ˆ 2 =τσ   

The intraclass correlation or correlation between repeated measurements on a sow is: 

724.0
557.0464.1
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τ
tr  

 
 
11.2.5 Maximum Likelihood Estimation 

Alternatively, parameters can be obtained by using maximum likelihood (ML) estimation. 
Under the assumption of normality, the likelihood function is a function of the parameters 
for a given set of N observations: 

)|,,( 22 yL τσσµ  

It can be shown that under the assumption of normality, the log likelihood of a random 
effects one-way model is: 
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Writing µ−ijy  as µ−+− .. iiij yyy  and simplifying, the log likelihood is:  
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The maximum likelihood estimators are chosen to maximize the log likelihood function. 
The maximum of the function can be determined by taking partial derivatives of the log 
likelihood function with respect to the parameters: 
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These derivatives are equated to zero to find the estimators µ̂ , 2
_ˆ MLτσ  and 2ˆ MLσ . Note that 

the second derivative must be negative when parameters are replaced with solutions. Also, 
maximum likelihood estimators must satisfy 0ˆ 2 >MLσ  and 0ˆ 2

_ ≥MLτσ .  
For µ̂ : 
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For 2
_ˆ MLτσ  and 2ˆ MLσ  the equations are: 
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Note that for unbalanced data there is not an analytical solution for these two equations, 
they must be solved iteratively. For balanced data, that is, when ni = n, there is an analytical 
solution, the log likelihood simplifies to: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )22

2

2

2

2

2

22222

2
..

2

...

2

.
                                                  

2
1 

2
12

2
)|,,(

τ

ττ

σσ
µ

σσ

σσσπσσµ

n
yanyynyy

lognanlogalogNyLlog

i ii j iij

+
−

−
−

−
−

−

−
−

−+−−=

∑∑ ∑  

After taking partial derivatives and equating them to zero the solutions are: 
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Example: For the example of progesterone concentration in sows, estimate between and 
within sows variance components by maximum likelihood.  
 
The following was computed previously: 

( ) 156.22... 2
 =−= ∑i iSOWWITHIN yynSS  

( ) 900.23.. 2 =−= ∑∑i j ijSOW yySS  

Also, a = 8, and n = 3. 
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11.2.6 Restricted Maximum Likelihood Estimation 

Restricted maximum likelihood (REML) estimation is a maximum likelihood estimation that 
does not involve µ, but takes into account the degrees of freedom associated with estimating 
the mean. The simplest example is estimation of the variance based on the n observations in 
which the REML estimator is: 
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The REML estimator takes into account the degree of freedom needed for estimating µ.  
 
For the one-way random model and balanced data REML maximizes the part of the 
likelihood which does not involve µ. This is the likelihood function of σ2 and στ

2 given the 
means or deviations of means expressed as ( )∑ −

i i yyn 2...  and ( )2
.∑∑ −

i j iij yy . The 

likelihood is: 

( ) ( )
( ) ( )

( )

( )( ) ( )( ) ann

eyyyynL
aaanan

n
yynyy

i i j iiji

i ii j iij

12221

....
2
1

2222

2
0.,...|,

22

2

2

−−−












+

∑ −
+

∑ ∑ −
−

+
=



 >−−∑ ∑∑

τ

σσσ

τ

σσσπ
σσ

τ

 



Chapter 11  One-way Analysis of Variance  241 

 

The log likelihood that is to be maximized is: 
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By taking the first derivatives and equating them to zero the following estimators are 
obtained: 
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It must also hold that 0ˆ 2 >REMLσ  and 0ˆ 2
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Note that for balanced data these estimators are equal to ANOVA estimators, since: 
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11.2.7 SAS Example for the Random Effects One-way Model 

The SAS program for the example of progesterone concentration of sows is as follows. 
Recall the data:  
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    Sow     
Measure 1 2 3 4 5 6 7 8 
 1 5.3 6.6 4.3 4.2 8.1 7.9 5.5 7.8 
 2 6.3 5.6 7.0 5.6 7.9 4.7 4.6 7.0 
 3 4.2 6.3 7.9 6.6 5.8 6.8 3.4 7.9 

 
SAS program: 
 
DATA sow; 
INPUT sow prog @@; 
DATALINES; 
1  5.3   1  6.3   1  4.2   2  6.6   2  5.6   2  6.3 
3  4.3   3  7.0   3  7.9   4  4.2   4  5.6   4  6.6 
5  8.1   5  7.9   5  5.8   6  7.9   6  4.7   6  6.8 
7  5.5   7  4.6   7  3.4   8  7.8   8  7.0   8  7.9 
; 
PROC MIXED DATA=sow METHOD = REML; 
    CLASS sow ; 
    MODEL prog = / SOLUTION; 
    RANDOM sow / SOLUTION; 
RUN; 

 
Explanation: The MIXED procedure is used, which is appropriate for analysis of random 
effects, because it gives correct predictions of random effects and estimates of standard 
errors. The default method for variance component estimation is restricted maximum 
likelihood (REML). It can be changed to maximum likelihood by defining METHOD = 
ML. The CLASS statement defines the independent categorical variable (sow). The 
MODEL statement defines the dependent variable (prog); MODEL prog = ; indicates that in 
the model there is no fixed independent variable,  only the total mean is considered to be 
fixed. The RANDOM statement defines sow as a random variable. The SOLUTION options 
after the slash specify output of solutions (prediction of sow effects). 
 
SAS output: 
            Covariance Parameter Estimates (REML) 
 
            Cov Parm       Estimate 
            SOW          0.55714286 
            Residual     1.49375000 
 
                   Solution for Fixed Effects 
 
Effect         Estimate     Std Error    DF       t  Pr > |t| 
INTERCEPT    6.13750000    0.36315622     7   16.90    0.0001 
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                    Solution for Random Effects 
 
Effect  SOW      Estimate       SE Pred    DF       t  Pr > |t| 
SOW  1        -0.45985896    0.54745763    16   -0.84    0.4133 
SOW  2         0.01540197    0.54745763    16    0.03    0.9779 
SOW  3         0.13861777    0.54745763    16    0.25    0.8033 
SOW  4        -0.35424542    0.54745763    16   -0.65    0.5268 
SOW  5         0.59627645    0.54745763    16    1.09    0.2922 
SOW  6         0.17382228    0.54745763    16    0.32    0.7550 
SOW  7        -0.86471086    0.54745763    16   -1.58    0.1338 
SOW  8         0.75469676    0.54745763    16    1.38    0.1870 

 
Explanation: Not shown are Model Information, Class Level Information, Dimensions, and 
Iteration History. The first table shows the variance components (Covariance Parameter 
Estimates (REML)). Variance components for SOW and Residual are 0.55714286 and 
1.4957500, respectively. The next table shows Solution for Fixed Effects. In this example, 
only the total mean (INTERCEPT) is defined as a fixed effect. The Estimate is 6.1375000 
with the standard error (Std Error) 0.36315622. In the next table are predictions for sows. 
For example SOW1 has the Estimate of –0.45985896 with the prediction standard error (SE 
Pred) of 0.54745763. The t tests (Prob > |t|) show that no sow effect is different to zero. 
This implies that sow variance is not significantly different to zero either. 
 

11.3 Matrix Approach to the One-way Analysis of Variance Model 

11.3.1 The Fixed Effects Model 

11.3.1.1 Linear Model 

Recall that the scalar one-way model with equal numbers of observations per group is: 

yij = µ + τi + εij i = 1,...,a;  j = 1,...,n 

where: 
yij = observation j in group or treatment i  
µ = the overall mean 
τi = the fixed effect of group or treatment i (denotes an unknown parameter) 
εij = random error with mean 0 and variance σ2 
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Thus, each observation yij can be expressed as: 

y11 = µ + τ1 + ε11 = 1µ + 1τ1 + 0τ2 + ... 0τa + ε11  
y12 = µ + τ1 + ε12 = 1µ + 1τ1 + 0τ2 + ... 0τa + ε12 
... 
y1n = µ + τ1 + ε1n = 1µ + 1τ1 + 0τ2 + ... 0τa + ε1n 
y21 = µ + τ2 + ε21 = 1µ + 0τ1 + 1τ2 + ... 0τa + ε21 
... 
y2n = µ + τ2 + ε2n = 1µ + 0τ1 + 1τ2 + ... 0τa + ε2n 
... 
ya1 = µ + τa + εa1= 1µ + 0τ1 + 0τ2 + ... 1τa + εa1 
... 
yan = µ + τa + εan = 1µ + 0τ1 + 0τ2 + ... 1τa + εan 

The set of equations can be shown using vectors and matrices: 

y = Xβ + ε 

where: 
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y = vector of observations 
X = design matrix which relates y to β 
β = vector of parameters 
ε = vector of random errors with mean E(ε) = 0 and variance Var(ε) = σ2I  

Also, vector 0 is a vector with all zero elements, I is an identity matrix. The dimensions of 
each vector or matrix is shown at its lower right. 
 
The expectation and variance of y are: 

E(y) = Xβ                Var(y) = σ2I  
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11.3.1.2 Estimating Parameters 

Assuming a normal model, y is a vector of independent normal random variables with a 
multivariate normal distribution with mean Xβ and variance Iσ2.  
 
The parameters can be estimated by using either least squares or maximum likelihood 
estimation. To calculate the solutions for vector β, the normal equations are obtained: 

yX'βXX' =
~  

where: 
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These equations are often called ordinary least squares (OLS) equations. The X'X matrix 
does not have an inverse, since its columns are not linearly independent. The first column is 
equal to sum of all other columns. To solve for β~ , a generalized inverse (X'X)- is used. The 
solution vector is: 

yX'XX'β −= )(~  

with the mean: 

( ) XβX'XX'β −= )(~E  

and variance: 

( ) ( ) 2)~( σ−−= XX'XX'XX'βVar  

In this case there are many solutions and the vector of solutions is denoted by β~ . However, 
this model gives unique solutions for the differences of groups or treatments and their 
means. Specific generalized inverse matrices are used to provide constraints to obtain 
meaningful solutions. A useful constraint is to set the sum of all group effects to be zero. 
Alternatively, one of the group effects may be set to zero and the others expressed as 
deviations from it. If 0~ =µ  then the effect of group or treatment i is:  

µτ ~~ +i  

which denotes an estimator of the group mean: 

iii µτµτµ ˆˆˆ~~ =+=+  

Such solutions are obtained by setting the first row and the first column of X'X to zero. 
Then its generalized inverse is: 
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The solution vector is: 
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A vector of the fitted values is: 

βXy ~ˆ =  

 
This is a linear combination of X and parameter estimates. The variance of the fitted values 
is: 

( ) 2)~( σX'XX'XβX −=Var  

Estimates of interest can be calculated by defining a vector λ such that λ'β is defined and 
estimable. 
 
The following vector λ is used to define the mean of the first group or treatment 
(population): 

λ' = [1 1 0 0 … 0] 

Then the mean is: 
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An estimator of the mean is: 
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Similarly, the difference between two groups or treatments can be defined. For example, to 
define the difference between the first and second groups the vector λ is: 

λ' = [1 1 0 0 … 0] – [1 0 1 0 … 0] = [0 1 –1 0 … 0] 

The difference is: 
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An estimator of the difference is: 

[ ] 212

1
~~

~
...

~
~
~

 0...0110~ ττ

τ

τ
τ
µ

−=























−=

a

βλ'  

Generally, the variances of such estimators are: 

( ) ( ) 2''~' σλXX'λβλ −=Var  

As shown before, an unknown variance σ2 can be replaced by the estimated variance 
s2 = MSRES = residual mean square. The square root of the variance of the estimator is the 
standard error of the estimator. 

The sums of squares needed for hypothesis testing using an F test can be calculated as: 
2..)(''~ yanSSTRT −= yXβ  

yXβyy ''~' −=RESSS  
2..)(' yanSSTOT −= yy  

 
 
Example: A matrix approach is used to calculate sums of squares for the example of pig 
diets. Recall the problem: an experiment was conducted in order to investigate the effects of 
three different diets on daily gains (g) in pigs. The diets are denoted with TR1, TR2 and TR3. 
Data of five different pigs in each of three diets are in the following table: 
 

TR1 TR2 TR3 
270 290 290 
300 250 340 
280 280 330 
280 290 300 
270 280 300 
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The model is: 

y = Xβ + ε 

where: 
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The normal equations are: 

yX'βXX' =
~  

where: 
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The solution vector is: 

yX'XX'β 1)(~ −=  

By defining generalized inverse as: 
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The sums of squares needed for testing hypotheses are: 
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Construction of the ANOVA table and testing is the same as already shown with the scalar 
model in section 11.1.2.  
 
11.3.1.3 Maximum Likelihood Estimation 

Assuming a multivariate normal distribution, y ~ N(Xβ, σ2I), the likelihood function is: 
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The log likelihood is: 
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To find the estimator that will maximize the log likelihood function, partial derivatives are 
taken and equated to zero. The following normal equations are obtained: 

yX'βXX' =
~  

and the maximum likelihood estimator of the variance is: 

( ) ( )XβyXβy −−= '1ˆ 2

NMLσ  
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11.3.1.4 Regression Model for the One-way Analysis of Variance 

A one-way analysis of variance can be expressed as a multiple linear regression model in 
the following way. For a groups define a – 1 independent variables such that the value of a 
variable is one if the observation belongs to the group and zero if the observation does not 
belong to the group. For example, the one-way model with three groups and n observations 
per group is: 

yi = β0 + β1x1i + β2x2i + εi   i = 1,..., 3n 

where: 
yi = observation i of dependent variable y  
x1i = an independent variable with the value 1 if an observation is in the first group, 
0 if an observation is not in the first group 
x2i = an independent variable with the value 1 if an observation is in the second 
group, 0 if an observation is not in the second group  
β0, β1, β2 = regression parameters 
εi = random error  

Note that it is not necessary to define a regression parameter for the third group since if the 
values for both independent variables are zero that will denote that observation is in the 
third group.  

We can show the model to be equivalent to the one-way model with one categorical 
independent variable with groups defined as levels.  
The regression model in matrix notation is:  

y = Xrβr + ε 

where: 
y = the vector of observations of a dependent variable 
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X  = the matrix of observations of independent variables, 

 1n is a vector of ones, 0n is a vector of zeros 
ε = the vector of random errors  

Recall that the vector of parameter estimates is: 
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The Xr'Xr matrix and its inverse are: 
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The one-way model with a categorical independent variable is: 

yij = µ + τi + εij  i = 1,...,a;  j = 1,...,n 

where: 
yij = observation j in group or treatment i  
µ = the overall mean 
τi = the fixed effect of group or treatment i  
εij = random error  

 
In matrix notation the model is: 

y = Xowβow + ε 

where: 
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X  = the matrix of observations of independent variable, 

1n is a vector of ones, 0n is a vector of zeros 
 
The solution vector is: 

y'XX'Xβ owowowow
−= )(~  

where:  
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The columns of Xow'Xow are linearly dependent since the first column is equal to the sum of 
the second, third and fourth columns. Also, the Xow'Xow being symmetric the rows are 
linearly dependent as well. Consequently, for finding a solution only three rows and three 
columns are needed. A solution for owβ~ can be obtained by setting 3

~τ  to zero, that is by 
setting the last row and the last column of Xow'Xow to zero. This will give: 
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Its generalized inverse is: 
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The solution vector is: 
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Since Xow'Xow and Xr'Xr matrices are equivalent giving equivalent inverses, it follows that:  

0
ˆ~ βµ =  

11
ˆ~ βτ =  

22
ˆ~ βτ =  

and the effect for the third group is zero. 
 
As stated before, the difference between the group means will be the same regardless of 
using regression model or any generalized inverse in a one-way model. 

The equivalence of parameter estimates of the models defined above can be shown in 
the following table: 
 

 Models Equivalence of 
solution 

 yi = β0 + β1x1i + β2x2i + εi  yij = µ + τi + εij  

Group 1 x1 = 1; x2 = 0 then 10
ˆˆˆ ββ +=iy  1

~~ˆ τµ +=iy  
11

~ˆ τβ =  

Group 2 x1 = 0; x2 = 1 then 20
ˆˆˆ ββ +=iy  2

~~ˆ τµ +=iy  
22

~ˆ τβ =  

Group 3 x1 = 0; x2 = 0 then 0
ˆˆ β=iy  3

~~ˆ τµ +=iy  
3

~0 τ=  and µβ ~ˆ
0 =  
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11.3.2 The Random Effects Model 

11.3.2.1 Linear Model 

The random effects model with equal numbers of observations per group can be presented 
using vectors and matrices as follows: 

y = 1µ + Zu + ε 

where: 
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y = vector of observations 
µ = the mean  
Z = design matrix which relates y to u 
u = vector of random effects τi with the mean 0 and variance G = στ

2
 Ia  

ε = vector of random errors with mean 0 and variance R = σ2Ian  
a = the number of groups, n = the number of observations in a group 

The expectations and (co)variances of the random variables are: 

E(u) = 0 and Var(u) = G = στ
2
 Ia  

E(ε) = 0 and Var(ε) = R = σ2Ian  
E(y) = µ and Var(y) = V = ZGZ’ + R = στ
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where Jn is a matrix of ones, In is an identity matrix, both matrices with dimension n x n.  
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Here: 
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11.3.2.2 Prediction of Random Effects 

In order to predict the random vector u, it is often more convenient to use the following 
equations: 

[ ] [ ] [ ] yZ1
u

Z1VZ1  ' 
ˆ
ˆ

   ' 1 =
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



− µ
 

These equations are derived by exactly the same procedure as for the fixed effects model 
(i.e. by least squares), only they contain variance V. Because of that, these equations are 
called generalized least squares (GLS) equations.  
Using V = ZGZ’ + R, the GLS equations are:  
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Substituting the expressions of variances, G = στ
2
 Ia  and R = σ2Ian, in the equations: 
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or simplified: 
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The solutions are: 
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or written differently: 
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If the variances are known the solutions are obtained by simple matrix operations. If the 
variances are not known, they must be estimated, using for example, maximum likelihood 
estimation.  
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Example: Calculate the solutions for the example of progesterone concentrations in sows 
by using matrices. Recall the data: 
 

    Sow     
Measure 1 2 3 4 5 6 7 8 
 1 5.3 6.6 4.3 4.2 8.1 7.9 5.5 7.8 
 2 6.3 5.6 7.0 5.6 7.9 4.7 4.6 7.0 
 3 4.2 6.3 7.9 6.6 5.8 6.8 3.4 7.9 

 
Assume that the variance components are known, between sows στ

2 = 1 and within sows 
σ2 = 2. The number of sows is a = 8 and the number of measurements per sow is n = 3.  
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The vector 







û
µ̂

 contains estimates of the mean and individual effects of the sows. These 

estimates do not exactly match those from the SAS program in section 11.2.7 because given 
values of the between and within sow variance components (στ

2 = 1 and σ2 = 2) were used 
here, and in section 11.2.7 variance components were estimated from the data.  
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11.3.2.3 Maximum Likelihood Estimation 

Assuming a multivariate normal distribution, y ~ N(1µ, V = στ
2
 ZZ’ + σ2IN), the density 

function of the y vector is: 

( ) ( )

( ) V
Vβy
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N
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),|(

1'
2
1

−−− −

=  

where N is the total number of observations, |V| is the determinant of the V matrix, and 1 is 
a vector of ones. The likelihood function is:  

( ) ( )

( ) V
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2
1
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The log likelihood is: 

( ) ( ) ( )µµπ 1yV1yV −−−−−= −1'
2
1

2
12 

2
1 loglogNLlog  

To find the estimator which will maximize the log likelihood, partial derivatives are taken 
and equated to zero, to obtain the following: 

( ) yV11V1 11 ˆ'ˆˆ' −− =µ  

( ) ( ) ( )µµ ˆˆˆ'ˆˆ 111 1yVV1yV −−= −−−tr  

( ) ( ) ( )µµ ˆˆ'ˆ'ˆ'ˆ 111 1yVZZV1yZZV −−= −−−tr  

where tr is the trace or the sum of the diagonal elements of the corresponding matrix. 
 
Often those equations are expressed in a simplified form by defining:  

( ) yP1yV 1
1 ˆˆˆ =−− µ  

Note that from the first likelihood equation: 

( ) yV11V111 111 ˆ'ˆ'ˆ −−−=µ     and  

( ) yV11V11VyVyP 11111
1

ˆ'ˆ'ˆˆˆ −−−−− −=  

Then the two variance equations are: 

( ) yPPyV 11
1 ˆˆ'ˆ =−tr  

( ) yPZZPyZZV 11
1 ˆ'ˆ''ˆ =−tr  

As shown in section 11.2.5, for balanced data there is an analytical solution of those 
equations. For unbalanced data the maximum likelihood equations must be solved 
iteratively using extensive computing methods such as Fisher scoring, Newton-Raphson, or 
an expectation maximization (EM) algorithm (see for example Culloch and Searle, 2001).  
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11.3.2.4  Restricted Maximum Likelihood Estimation 

Variance components are estimated with restricted maximum likelihood (REML) by using 
residuals after fitting the fixed effects in the model. In the one-way random model the fixed 
effect corresponds to the mean. Thus, instead of using a y data vector, REML uses linear 
combinations of y, say K'y, with K chosen such that K'1 = 0. The K matrix has N – 1 
independent k vectors such that k'1 = 0. 
 
The transformed model is: 

K'y = K'Zu + K'ε 

If y has a normal distribution, y ~ N(1µ, V = στ
2
 ZZ' + σ2I), then because K'1 = 0, the 

distribution  of K'y is N(0, K'VK), that is:  

E(K'y) = 0 and 
Var(K'y) = K'VK  = στ

2
 K'ZZ'K + K'Iσ2 I K 

The K'y are linear contrasts and they represent residual deviations from the estimated mean 
( )..yyij − .  
 
Following the same logic as for maximum likelihood, the REML equations are: 

( ) ( ) ( ) yKKVKKKKVKKyKKKVK 'ˆ''ˆ'''ˆ'
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=
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


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It can be shown that for any K: 

( ) 1
1 ˆ'ˆ' PKKVKK =

−
 

Recall that:  

( ) 11111
1

ˆ'ˆ'ˆˆˆ −−−−− −= V11V11VVP  

Then: 

( ) ( ) ( ) yV11V11VyV1yVyPyKKVKK 111111
1

1 ˆ'ˆ''ˆˆˆˆˆ'ˆ' −−−−−−−
−=−== µ  

With rearrangement, the REML equations can be simplified to: 

( ) yPPyP 11
1 ˆˆˆ =tr  

( ) yPZZPyZZP 11
1 ˆ'ˆ'ˆ =tr  

11.4 Mixed Models 

In this chapter thus far one-way classification models have been explained to introduce 
procedures for estimation and tests. Logical development is to models with two or more 
classifications, with random, fixed, or combinations of fixed and random effects. More 
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complex models will be introduced in the later chapters as examples of particular 
applications. Here, some general aspects of mixed linear models will be briefly explained. 
Mixed models are models with both fixed and random effects. Fixed effects explain the 
mean and random effects explain variance-covariance structure of the dependent variable. 
Consider a linear model with fixed effects β, a random effect u, and random error effects ε. 
Using matrix notation the model is: 

y = Xβ + Zu + ε 

where: 
y = vector of observations 
X =design matrix which relates y to β 
β = vector of fixed effects  
Z = design matrix which relates y to u 
u = vector of random effects with mean 0 and variance-covariance matrix G  
ε = vector of random errors with mean 0 and variance-covariance matrix R  

The expectations and (co)variances of the random variables are: 
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Thus,  

E(y) = Xβ and Var(y) = V = ZGZ' + R  
E(u) = 0 and Var(u) = G  
E(ε) = 0 and Var(ε) = R  

Although the structure of the G and R matrices can be very complex, the usual structure is 
diagonal, for example: 

G = στ
2Ia  

R = σ2IN  

With dimensions corresponding to the identity matrices I, N being the total number of 
observations, and a the number of levels of u.  
 
Then V is: 

V = ZGZ' + R = ZZ'στ
2 + σ2IN  

Obviously, the model can contain more than one random effect. Nevertheless, the 
assumptions and properties of more complex models are a straightforward extension of the 
model with one random effect.  
 
11.4.1.1  Prediction of Random Effects 

In order to find solutions for β and u the following equations, called mixed model equations 
(MME) , can be used: 









=

















+ −

−

−−−

−−

yRZ'
yRX'

u
β

GZRZ'XRZ'
ZRX'XRX'

1

1

111

11

ˆ

~
  



Chapter 11  One-way Analysis of Variance  259 

 

These equations are developed by maximizing the joint density of y and u, which can be 
expressed as:  

f(y, u) = f(y | u) f(u) 

Generally, the solutions derived from the mixed model equations are: 

( ) yVX'XVX'β 11 −−−=
1~  

( )βXyVGZ'u 1 ~ˆ −= −  

The estimators β~  are known as best linear unbiased estimators (BLUE), and the predictors 
û  are known as best linear unbiased predictors (BLUP). If the variances are known the 
solutions are obtained by simple matrix operations. If the variances are not known, they also 
must be estimated from the data, using for example, maximum likelihood estimation.  
 
 
Example: The one-way random model can be considered a mixed model with the overall 
mean µ a fixed effect and the vector u a random effect. Taking G = στ

2I and R = σ2I we 
have: 
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Here X = 1 yielding:  
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11.4.1.2 Maximum Likelihood Estimation 

Assuming a multivariate normal distribution, y ~ N(Xβ, V), the density function of the y 
vector is: 

( ) ( )

( ) V
Vβy

XβyVXβy

N

ef
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−−− −

=  

where N is the total number of observations, |V| is a determinant of the variance matrix V. 
The V matrix in its simplest form is often defined as ∑ =

=
m

j jjj0
2'σZZV , with (m + 1) 

components of variance, and Z0 = IN. 
The likelihood function is:  

( ) ( )
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2
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The log likelihood is: 
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( ) ( ) ( )XβyVXβyV −−−−−= −1'
2
1

2
12 

2
1 loglogNLlog π  

Taking partial derivatives of logL with respect to the parameters and equating them to zero, 
the following equations are obtained: 

( ) yVXβXVX 11 ˆ'~ˆ' −− =  

( ) ( ) ( )βXyVZZVβXyZZV ~ˆ'ˆ'~'ˆ 111 −−= −−−
jjjjtr  

where tr is a trace or the sum of the diagonal elements of the corresponding matrix, and 
second expressions denote (m + 1) different equations for each corresponding variance 
component. 
 
Alternatively, those equations can be expressed in a simplified form defining:  

( ) yPβXyV ˆ~ˆ 1 =−−  

Note that from the first likelihood equation: 

( ) yVXXVXXβX 111 ˆ'ˆ'~ −−−=      and  

( ) yVXXVXXVyVyP 11111 ˆ'ˆ'ˆˆˆ −−−−− −=  

Then the variance equations are: 

( ) yPZZPyZZV ˆ'ˆ''ˆ 1
jjjjtr =−  

Generally, these equations must be solved using iterative numerical methods.  
 
 
Example: For a normal distribution, y ~ N(Xβ,V = στ

2ZZ' + σ2I), with two variance 

components, partial derivatives 
β 

 
δ

δ Llog , 2 
 

τσδ
δ Llog  and 2 

 
σδ

δ Llog  are taken and equated to zero, 

giving the following equations : 

( ) yVXβXVX 11 ˆ'~ˆ' −− =  

( ) ( ) ( )βXyVVβXyV ~ˆˆ'~ˆ 111 −−= −−−tr  

( ) ( ) ( )βXyVZZVβXyZZV ~ˆ'ˆ'~'ˆ 111 −−= −−−tr  
 
By using ( ) yPXβyV ˆˆ 1 =−−  the equations for the variance components are: 

( ) yPPyV ˆˆ'ˆ 1 =−tr  

( ) yPZZPyZZV ˆ'ˆ''ˆ 1 =−tr  
 
 
11.4.1.3 Restricted Maximum Likelihood Estimation 

As stated in 11.3.2.3, variance components are estimated with restricted maximum 
likelihood REML by using the residuals after having fitted the fixed effects part of the 
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model. Thus, instead of using a y data vector, REML uses linear combinations of y, say K'y, 
with K chosen such that K'X = 0. The K matrix has N – 1 independent k vectors such that 
k'X = 0. 
 
The transformed model is: 

K'y = K'Zu + K'ε 

If y has a normal distribution, y ~ N(Xβ, V), then because K'X = 0, the distribution of K'y 
is N(0, K'VK), that is:  

E(K'y) = 0 and 
Var(K'y) = K'VK  

The K'y are linear contrasts and they represent residual deviations from the estimated mean 
and fixed effects. Following the same logic as for ML, the REML equations are: 

( ) ( ) ( ) yKKVKKZZKKVKKyKZZKKVK 'ˆ'''ˆ''''ˆ'
111 −−−

=
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It can be shown that for any K: 
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Recall that ( ) 11111 ˆ'ˆ'ˆˆˆ −−−−− −= VXXVXXVVP  and then: 

( ) ( ) ( ) yVXXVXXVyVXβyVyPyKKVKK 1111111 ˆ'ˆ''ˆˆˆˆ'ˆ' −−−−−−−
−=−==  

After some rearrangement, the REML equations can be simplified to: 

( ) yPZZPyZZP ˆ'ˆ'ˆ
jjjjtr =  

Again, these equations must be solved using iterative numerical methods.  
 
 
Example: If y has a normal distribution y ~ N(1µ, V = στ

2
 ZZ' + σ2IN), then because 

K'X = 0, the distribution for K'y is N(0, στ
2
 K'ZZ'K + σ2 K'K), that is:  

 
E(K'y) = 0 and 
Var(K'y) = K'VK = στ

2
 K'ZZ'K + σ2 K'K 

 
The following equations are obtained:  
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Using:  

( ) PKKKKZZKK ˆ''ˆ''ˆ 122 =+
−

σστ  
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The two variance equations are: 

( ) yPPyP ˆˆˆ 1=tr  

( ) yPZZPyZZP ˆ'ˆ'ˆ 1=tr  

Exercises 

11.1. Four lines of chickens (A, B, C and D) were crossed to obtain four crosses AB, AC, BC 
and BD. Egg weights of those crosses were compared. The weights (g) are as follows: 

 
AB 58 51 56 52 54 57 58 60   
AC 59 62 64 60 62      
BC 56 57 56 55       
BD 59 55 50 64 57 53 57 53 56 55 

 
Test the significance of the difference of arithmetic means. 
 
11.2. Hay was stored using three different methods and its nutrition value was measured. 
Are there significant differences among different storage methods? 
 

TRT1 TRT2 TRT3 
17.3 22.0 19.0 
14.0 16.9 20.2 
14.8 18.9 18.8 
12.2 17.8 19.6 

 
11.3. Daily gains of heifers kept on two pastures were measured. There were 20 heifers on 
each pasture. The pastures are considered a random sample of the population of pastures. 
Estimate the intraclass correlation, that is, correlation between heifers within pastures. The 
mean squares, degrees of freedom and expected mean squares are shown in the following 
ANOVA table: 
 
 

Source  df MS E(MS) 
Between pasture 1 21220 σ2 + 20 σ2

τ 
Within pasture 38 210 σ2 
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Chapter 12  
 
Concepts of Experimental Design 

An experiment can be defined as planned research conducted to obtain new facts, or to 
confirm or refute the results of previous experiments. An experiment helps a researcher to 
get an answer to some question or to make an inference about some phenomenon. Most 
generally, observing, collecting or measuring data can be considered an experiment. In a 
narrow sense, an experiment is conducted in a controlled environment in order to study the 
effects of one or more categorical or continuous variables on observations. An experiment is 
usually planned and can be described in several steps: 1) introduction to the problem, 2) 
statement of the hypotheses, 3) description of the experimental design, 4) collection of data 
(running the experiment), 5) analysis of the data resulting from the experiment, and 
6) interpretation of the results relative to the hypotheses.  

The planning of an experiment begins with an introduction in which a problem is 
generally stated, and a review of the relevant literature including previous results and a 
statement of the importance of solution of the problem. After that an objective of the 
research is stated. The objective should be precise and can be a question to be answered, a 
hypothesis to be verified, or an effect to be estimated. All further work in the experiment 
depends on the stated objective.  

The next step is defining the materials and methods. One part of that is choosing and 
developing an experimental design. An experimental design declares how to obtain data. 
Data can come from observations of natural processes, or from controlled experiments. It is 
always more efficient and easier to draw conclusions if you know what information (data) is 
sought, and the procedure that will be used to obtain it. This is true for both controlled 
experiments and observation of natural processes. It is also important to be open to 
unexpected information which may lead to new conclusions. This is especially true when 
observing natural processes.  

For a statistician, an experimental design is a set of rules used to choose samples from 
populations. The rules are defined by the researcher himself, and should be determined in 
advance. In controlled experiments, an experimental design describes how to assign 
treatments to experimental units, but within the frame of the design must be an element of 
randomness of treatment assignment. In the experimental design it is necessary to define 
treatments (populations), size of samples, experimental units, sample units (observations), 
replications and experimental error. The definition of a population (usually some treatment) 
should be such that the results of the experiment will be applicable and repeatable. From the 
defined populations, random and representative samples must be drawn. 

The statistical hypotheses usually follow the research hypothesis. Accepting or 
rejecting statistical hypotheses helps in finding answers to the objective of the research. In 
testing statistical hypotheses a statistician uses a statistical model. The statistical model 
follows the experimental design, often is explained with a mathematical formula, and 
includes three components: 1) definition of means (expectations), 2) definition of dispersion 
(variances and covariances), and 3) definition of distribution. Within these three 
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components assumptions and restrictions must be defined in order to be able to design 
appropriate statistical tests.  

Having defined the experimental design, the experiment or data collection is 
performed. Data collection must be carried out according to the experimental design. Once 
the data are collected, data analysis follows, which includes performing the statistical 
analysis, and describing and interpreting the results. The models used in the analysis are 
determined by the goals of the experiment and its design. Normally, the data analysis should 
be defined prior to data collection. However, sometimes it can be refined after data 
collection if the researcher has recognized an improved way of making inferences or 
identified new facts about the problem. Finally, the researcher should be able to make 
conclusions to fulfill the objective of the experiment. Conclusions and answers should be 
clear and precise. It is also useful to discuss practical implications of the research and 
possible future questions relating to similar problems.  
 

12.1 Experimental Units and Replications 

An experimental unit is a unit of material to which a treatment is applied. The experimental 
unit can be an animal, but could also be a group of animals, for example, 10 steers in a pen. 
The main characteristic of experimental units is that they must be independent of each other. 
If a treatment is applied to all steers in a pen, obviously the steers are not independent, and 
that is why the whole pen is considered an experimental unit. The effect of treatment is 
measured on a sample unit. The sample unit can be identical to the experimental unit or it 
can be a part of the experimental unit. For example, if we measure weights of independent 
calves at the age of 6 months, then a calf is a sample and an experimental unit. On the other 
hand, if some treatment is applied on a cage with 10 chicks, then the cage is the 
experimental unit, and each chick is a sample unit.  

When a treatment is applied to more than one experimental unit, the treatment is 
replicated. There is a difference between replications, subsamples and repetitions, which is 
often neglected. Recall that a characteristic of experimental units is that they are 
independent of each other. Replications are several experimental units treated alike. In some 
experiments it is impossible to measure the entire experimental unit. It is necessary to select 
subsamples from the unit. For example, assume an experiment to measure the effect of some 
pasture treatments on the protein content in plants. Plots are defined as experimental units, 
and treatments assigned randomly to those plots. The protein content will not be measured 
on the whole plant mass from each plot, but subsamples will be drawn from each plot. Note 
that those subsamples are not experimental units and they are not replications, because there 
is dependency among them. Repetitions are repeated measurements on the same 
experimental unit. For example in an experiment for testing the effects of two treatments on 
milk production of dairy cows, cows are chosen as experimental units. Milk yield can be 
measured daily for, say, two weeks. These single measurements are not replications, but 
repeated measurements of the same experimental units. Obviously, repeated measurements 
are not independent of each other since they are measured on the same animal. 

Often in field research, the experiment is replicated across several years. Also, to test 
treatments in different environments, an experiment can be replicated in several locations. 
Those repeats of an experiment in time and space can be regarded as replications. The 
purpose of such experiments is to extend conclusions over several populations and different 
environments. Similarly in labs, the whole experiments can be repeated several times, of 
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course with different experimental units, but often even with different technicians, in order 
to account for environmental or human factors in the experiment. 
 

12.2 Experimental Error 

A characteristic of biological material is variability. Recall that in randomly selected 
experimental samples, total variability can be partitioned to explained and unexplained 
causes. In terms of a single experimental unit (yij), each can be expressed simply as: 

ijiij ey += µ̂  

where: 
iµ̂  = the estimated value describing a set of the explained effects i, treatments, farms, 

years, etc. 
eij = unexplained effect  

 
Therefore, observations yij differ because of belonging to different explained groups i, and 
because of different unexplained effects eij. The term iµ̂  estimates and explains the effects 
of the group i. However, there is no explanation, in experimental terms, for the differences 
between experimental units (replicates) within a group. Hence, this variation is often called 
experimental error. Usual measures of experimental error are the mean square or square root 
of mean square, that is, estimates of variance or standard deviation. For the simplest 
example, if some quantity is measured on n experimental units and there is unexplained 
variability between units, the best estimate of the true value of that quantity is the mean of 
the n measured values. A measure of experimental error can be the mean of the squared 
deviations of observations from the estimated mean. 

In regression or one-way analysis of variance a measure of experimental error  is the 
residual mean square (MSRES), which is a measure of unexplained variability between 
experimental units after accounting for explained variability (the regression or treatment 
effect). Recall, that MSRES = s2 is an estimator of the population variance. In more complex 
designs the mean square for experimental error can be denoted by MSE. Making inferences 
about treatments or regression requires a measure of the experimental error. Replication 
allows estimation of experimental error, without which there is no way of differentiating 
random variation from real treatment or regression effects.  

Experimental error can consist of two types of errors: systematic and random. 
Systematic errors are consistent effects which change measurements under study and can be 
assigned to some source. They produce bias in estimation. This variability can come from 
lack of uniformity in conducting the experiment, from uncalibrated instruments, 
unaccounted temperature effects, biases in using equipment, etc. If they are recognized, 
correction should be made for their effect. They are particularly problematic if they are not 
recognized, because they affect measurements in systematic but unknown ways.  

Random errors occur due to random, unpredictable, phenomena. They produce 
variability that cannot be explained. They have an expectation of zero, so over a series of 
replicates they will cancel out. In biological material there are always random errors in 
measurements. Their contribution to variance can be characterized by using replications in 
the experiment. For example, in an experiment with livestock, the individual animals will 
have different genetic constitution. This is random variability of experimental material. 



266  Biostatistics for Animal Science 

 

Measurement error, the degree to which measurements are rounded, is also a source of 
random error. 

Recall the difference between experimental units and sample units, and between 
replications, subsamples and repeated measurements. Their relationship is important to 
defining appropriate experimental error to test treatment effects. Recall again that 
experimental error is characterized by unexplained variability between experimental units 
treated alike. Here are some examples:  
 
 
Example: The aim of an experiment is to test several dosages of injectable growth hormone 
for dairy cows. Cows are defined as experimental units. The variability among all cows 
consists of variability due to different growth hormone injections, but also due to 
unexplained differences between cows even when they are treated alike, which is the 
experimental error. To have a measure of error it is necessary to have replicates, more than 
one cow per treatment, in the experiment. The trait milk yield can be measured repeatedly 
on the same cow. These are repeated measures. Although it is possible to take multiple milk 
samples, cows are still the experimental units because treatments are applied to the cows, 
not individual samples. The experimental error for testing treatments is still the unexplained 
variability between cows, not between repeated measurements on the cows.  
 
Another example: The aim of an experiment is to test three rations for fattening steers. 
The treatments were applied randomly to nine pens each with ten steers. Here, each pen is 
an experimental unit, and pens within treatment are replications. Because a single treatment 
is applied to all animals in a pen, pen is the experimental unit even if animals are measured 
individually.  
 

12.3 Precision of Experimental Design 

The following should be taken into consideration in developing a useful experimental 
design and an appropriate statistical model. If possible, all potential sources of variability 
should be accounted for in the design and analysis. The design must provide sufficient 
experimental units for adequate experimental error. To determine the appropriate size of the 
experiment preliminary estimates of variability, either from similar experiments or the 
literature, should be obtained. The level of significance, α, and power of test should be 
defined. These will be used to determine the minimum number of replicates sufficient to 
detect the smallest difference (effect size) of practical importance. Too many replicates 
mean unnecessary work and cost. 

There are differences in the meanings of accuracy and precision. Generally, accuracy 
indicates how close to an aim, and precision how close together trials are to each other. In 
terms of an experiment, accuracy is often represented by how close the estimated mean of 
replicated measurements is to the true mean. The closer to the true mean, the more accurate 
the results. Precision is how close together the measurements are regardless of how close 
they are to the true mean, that is, it explains the repeatability of the results. Figure 12.1 
shows the meaning of accuracy and precision of observations when estimating the true 
mean. Random errors affect precision of an experiment and to a lesser extent its accuracy. 
Smaller random errors mean greater precision. Systematic errors affect the accuracy of an 
experiment, but not the precision. Repeated trials and statistical analysis are of no use in 
eliminating the effects of systematic errors. In order to have a successful experiment it is 
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obvious that systematic errors must be eliminated and random errors should be as small as 
possible. In other words, the experimental error must be reduced as much as possible and 
must be an unbiased estimate of random variability of units in the populations. 
 

True Mean 

Not accurate but precise 

True Mean 

Not accurate not precise  

True Mean 

Accurate and precise 

True Mean 

Accurate but not precise 

 
Figure 12.1  Accuracy and precision 

 
In experiments precision is expressed as the amount of information (I):  

2σ
nI =  

where n is the number observations in a group or treatment, and σ2 is the variance between 
units in the population. Just as the estimator of the variance σ2 is the mean square error 
s2 = MSE, the estimator of the amount of information is:  

EMS
nI =  

Note that the reciprocal of I is the square of the estimator of the standard error of the mean 
( ys ): 

21
y

E s
n

MS
I

==  

Clearly, more information results in a smaller standard error and estimation of the mean is 
more precise. More information and precision also means easier detection of possible 
differences between means. Recall that the probability that an experiment will result in 
appropriate rejection of the null hypothesis is called power of test. Power is increased by 
reducing experimental error and /or increasing sample size. As long as experimental units 
are representative of the population, it is always more beneficial to decrease experimental 
error by controlling unexplained variability in the experiment than to increase the size of the 
experiment.  
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12.4 Controlling Experimental Error 

An effective experimental design should: 1) yield unbiased results; 2) have high power and 
low likelihood of type I error; and 3) be representative of the population to which results 
will apply.  The more the researcher knows about the treatments and experimental material, 
the easier it is to use appropriate statistical methods. For the experiment to be unbiased 
treatments must be randomly applied to experimental units. If the treatments are applied in a 
selective way bias can result. Samples should be drawn randomly, that is, experimental units 
should be representative of the population from which they originate. If an experiment is 
conducted with selected samples (for example, superior animals), the experimental error 
will be smaller than population variance. The consequence is that differences between 
treatments may be significant in the experiment, but the conclusion may not be applicable to 
the population. The power of the experiment depends on the number of replicates or degrees 
of freedom. The experimental error can be reduced by adding more replicates, or by 
grouping the experimental units into blocks according to other sources of variability besides 
treatment. The treatments must be applied randomly within blocks. For example, treatments 
can be applied to experimental units on several farms. Farm can be used as a block to 
explain variation and consequently reduce experimental error.  

In controlling the experimental error it is important to choose an optimal experimental 
design. Recall that the amount of information (I) is defined as: 

EMS
nI =  

The efficiency of two experimental designs can be compared by calculating the relative 
efficiency (RE) of design 2 to design 1 (with design 2 expected to have an improvement in 
efficiency): 
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where s2
1 and s2

2 are experimental error mean squares, and df1 and df2 are the error degrees 
of freedom for designs 1 and 2, respectively. A value of RE close to one indicates no 
improvement in efficiency, values greater than one indicate that the design 2 is preferred.  

The importance of properly conducting experiments is obvious. There is no statistical 
method that can account for mishandling animals or instruments, record mistakes, cheating, 
using improper or uncalibrated instruments, etc. That variability is not random and 
inappropriate conclusions will result from the statistical tests. These ‘mistakes’ may be such 
that they affect the whole experiment, a particular treatment or group, or even particular 
experimental units. The least damage will result if they affect the whole experiment 
(systematic errors). That will influence the estimation of means, but will not influence the 
estimation of experimental errors and conclusions about the differences between treatments. 
Mistakes that affect particular treatments lead to confounding. The effect of treatment may 
be under- or overestimated, but again this will not affect experimental error. If mistakes are 
made in an unsystematic way, only on particular units, experimental error will increase and 
reduce precision of the experiment.  
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12.5 Required Number of Replications  

A very important factor in planning an experiment is determining the number of replications 
needed for rejecting the null hypothesis if there is a difference between treatments of a 
given size. Increasing the number of replications increases the precision of estimates. 
However, as the number of replicates increases, the experiment may require excessive space 
and time. The number of replications may also be limited due to economic and practical 
reasons. When a sufficiently large number of replications are used, any difference can be 
found statistically significant. The difference, although significant, may be too small to have 
practical meaning. For example, in an experiment comparing two diets for pigs, a difference 
in daily gain of several grams may be neither practically nor economically meaningful, 
although with a sufficiently large experiment, even that difference can be statistically 
significant.  

Recall that in determining the number of replications the following must be taken into 
account: 

1) Estimation of the variance 
2) The effect size of practical importance and which should be found significant 
3) The power of test (1 - β) or probability of finding significant an effect of a given size 
4) The significance level (α), the probability of a type I error 
5) The type of statistical test 

 
For a test of difference between means, the number of replications (n) can be calculated 
from the following expression: 

( ) 2
2

2/ 2σ
δ

βα zz
n

+
≥  

where: 
zα/2 = the value of a standard normal variable determined with α probability of type 
I error 
zβ = the value of a standard normal variable determined with β probability of type II 
error 
δ = the difference desired to be found significant  
σ2 = the variance  

 
However, for more than two treatments, the level of significance must be adjusted for 
multiple comparisons. An alternative approach is to use a noncentral F distribution. The 
expression for the power of test for a given level of significance (α) and power (1-β) is 
used. The power of the test is given by:  

Power = P (F > Fα,(a-1),(N-a) = Fβ ) 

using a noncentral F distribution for H1 with a noncentrality parameter 2

2

σ

τ
λ ∑= i

n
, and 

degrees of freedom (a-1) and (na-a). Here, τi are the treatment effects, σ2 is the variance of 
the experimental units, n is the number of replications per treatment, a is the number of 
treatments and Fα,(a-1),(N-a) is the critical value. The necessary parameters can be estimated 

from samples as follows: n Σi τi2 with SSTRT and σ2 with s2 = MSRES. The noncentrality 
parameter is: 
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=λ  

A simple way to determine the number of replications needed is to calculate the power for a 
different number of replications n. The fewest n for which the calculated power is greater 
than the desired power is the appropriate number of replications.  
 
 
12.5.1 SAS Example for the Number of Replications 

The following SAS program can be used to calculate the number of replications needed to 
obtain the desired power. The example data are from the experiment examining the effects 
of pig diets on daily gains shown in section 11.1.2. 
 
SAS program: 
 
DATA a; 
DO n=2 TO 50; 
alpha=0.05; 
a=3; 
sst=728; 
df1=a-1; 
df2=a*n-a; 
sstrt=n*sst; 
mse=296.67; 
lambda=sstrt/mse;  
Fcrit=FINV(1-alpha,df1,df2);  
power=1-PROBF(Fcrit,df1,df2,lambda); 
OUTPUT; 
END; 
RUN; 
PROC PRINT DATA=a (OBS=1 ); 
WHERE power > .80; 
VAR alpha df1 df2 n power; 
RUN; 

 
Explanation: The statement, DO n = 2 to 50; indicates computation of the power for 2 to 
50 replications. The following are defined: alpha = significance level, a = number of 

treatments, sst = n Σi τi2 =sum of squared treatment effects (if SSTRT = the treatment sum of 
squares from the samples, then sst = SSTRT/n0, where n0 is the number of replications per 
treatment from the sample), mse = residual (error) mean square, df1 = treatment degrees of 
freedom, df2 = residual degrees of freedom, sstrt = treatment sum of squares, the estimated 
variance. Then, the noncentrality parameter (lambda), and the critical value (Fcrit) for the 
given degrees of freedom and level of significance are calculated. The critical value is 
computed with the FINV function, which must have as inputs the cumulative value of 
percentiles (1- α = 0.95) and degrees of freedom df1 and df2. The power is calculated with 
the CDF function. This is a cumulative function of the F distribution which needs the 
critical value, degrees of freedom and the noncentrality parameter lambda. As an alternative 
to CDF('F',Fcrit,df1, df2,lambda) the function PROBF(Fcrit,df1,df2,lambda) can  be used. 
This PRINT procedure reports only the least number of replications that results in a power 
greater than 0.80.  
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SAS output: 
                 alfa    df1    df2    n     power 
 
                 0.05     2      15    6    0.88181 

 
To obtain power of test greater than 0.80 and with the significance level of 0.05, at least 6 
observations per treatment are required.  
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Chapter 13  
 
Blocking 

In many experiments it is recognized in advance that some experimental units will respond 
similarly, regardless of treatments. For example, neighboring plots will be more similar than 
those further apart, heavier animals will have different gain than lighter ones, measurement 
on the same day will be more similar compared to measurements taken on different days, 
etc. In these cases experimental designs should be able to account for those known sources 
of variability by grouping homogeneous units in blocks. In this way, the experimental error 
decreases, and the possibility of finding a difference between treatments increases. Consider 
for example that the aim of an experiment is to compare efficiency of utilization of several 
feeds for pigs in some region. It is known that several breeds are produced in that area. If it 
is known that breed does not influence efficiency of feed utilization, then the experiment 
can be designed in a simple way: randomly choose pigs and feed them with different feeds. 
However, if an effect of breed exists, variability between pigs will be greater than expected, 
because of variability between breeds. For a more precise and correct conclusion, it is 
necessary to determine the breed of each pig. Breeds can then be defined as blocks and pigs 
within each breed fed different feeds.  
 

13.1 Randomized Complete Block Design 

A randomized complete block design is used when experimental units can be grouped in 
blocks according to some defined source of variability before assignment of treatments. 
Blocks are groups that are used to explain another part of variability, but the test of their 
difference is usually not of primary interest. The number of experimental units in each block 
is equal to the number of treatments, and each treatment is randomly assigned to one 
experimental unit in each block. The precision of the experiment is increased because 
variation between blocks is removed in the analysis and the possibility of detecting 
treatment effects is increased. The characteristics of randomized complete block design are: 

1. Experimental units are divided to a treatments and b blocks. Each treatment appears in 
each block only once. 

2. The treatments are assigned to units in each block randomly. 
 
This design is balanced, each experimental unit is grouped according to blocks and 
treatments, and there is the same number of blocks for each treatment. Data obtained from 
this design are analyzed with a two-way ANOVA, because two ways of grouping, blocks and 
treatments, are defined.  

Animals are most often grouped into blocks according to initial weight, body 
condition, breed, sex, stage of lactation, litter size, etc. Note, block does not necessarily 
indicate physical grouping. It is important that during the experiment all animals within a 
block receive the same conditions in everything except treatments. Every change of 
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environment should be changed in all blocks, but must be changed for all animals within a 
block.  
 
 
Example: The aim of this experiment was to determine the effect of three treatments 
(T1, T2 and T3) on average daily gain of steers. Before the start of the experiment steers were 
weighed, ranked according to weight, and assigned to four blocks. The three heaviest 
animals were assigned to block I, the three next heaviest to block II, etc.  In each block 
there were three animals to which the treatments were randomly assigned. Therefore, a total 
of 12 animals were used. The identification numbers were assigned to steers in the 
following manner: 
 

Block Animal number 
I 1,2,3 
II 4,5,6, 
III 7,8,9 
IV 10,11,12 

 
In each block the treatments were randomly assigned to steers.  
 

 Block 
 I II III IV 

No. 1 (T3) No. 4 (T1) No. 7 (T3) No. 10 (T3) 

No. 2 (T1) No. 5 (T2) No. 8 (T1) No. 11 (T2) 
Steer No.  
(Treatment)  

No. 3 (T2) No. 6 (T3) No. 9 (T2) No. 12 (T1) 
 
When an experiment is finished, the data can be rearranged for easier computing as in the 
following table: 
 

 Blocks 
Treatment I II III IV 

T1 y11 y12 y13 y14 
T2 y21 y22 y23 y24 
T3 y31 y32 y33 y34 

 
Generally for a treatments and b blocks: 
 

 Blocks 
Treatment I II … b 

T1 y11 y12 … y1b 
T2 y21 y22 … y2b 
… … … … … 
Ta ya1 ya2 … yab 
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Here, y11, y12,..., y34, or generally yij, denote experimental units in  treatment i and block j. 
 
The model for a randomized complete block design is: 

yij = µ + τi + βj + εij i = 1,...,a;  j = 1,...,b 

where: 
yij = an observation in treatment i and  block j  
µ = the overall mean 
τi = the effect of treatment i  
βj = the fixed effect of block j  
εij = random error with mean 0 and variance σ2  
a = the number of treatments; b = the number of blocks 

 
 
13.1.1 Partitioning Total Variability 

In the randomized complete block design the total sum of squares can be partitioned to 
block, treatment and residual sums of squares: 

SSTOT = SSTRT + SSBLK+ SSRES 
 
The corresponding degrees of freedom are: 

(na – 1) = (a – 1) + (b – 1) + (a – 1)(b – 1) 

Note that, (a – 1)(b – 1) = ab – a – b + 1. 
 
Compared to the one-way ANOVA, the residual sum of squares in the two-way ANOVA is 
decreased by the block sum of squares. Namely:  

SS’RES = SSBLK + SSRES  

where:  
SSRES = the two-way residual sum of squares (the experimental error for the 
randomized complete block design) 
SS’RES = the one-way residual sum of squares 

 
The consequence of the decreased residual sum of squares is increased precision in 
determining possible differences among treatments. 
 
The sums of squares are: 

∑ ∑ −=
i j ijTOT yySS 2..)(  

∑∑∑ −=−=
i ii j iTRT yybyySS 22 ..).(..).(  

∑∑ ∑ −=−=
i ji j jBLK yyayySS 22 ..).(..).(  

∑ ∑ +−−=
i j jiijRES yyyySS 2..)..(  

The sums of squares can be computed using a short-cut computation: 
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1) Total sum: 

Σi Σj yij  

2) Correction for the mean:  

( )
( ) ( )

( )
nsobservatioer oftotal numb

total sum
ba

y
C i j ij

  

2
2

==
∑ ∑

  

3) Total (corrected) sum of squares:  

∑∑ −=
i j ijTOT CySS 2  = Sum of all squared observations minus C 

4) Treatment sum of squares:  

( )
C

b

y
SS

i

j ij

TRT −= ∑ ∑ 2

 = Sum of ( )
treatment  in nsobservatio of no.

 sumtreatment 2

 for each 

treatment minus C 

Note that the number of observations in a treatment is equal to the number of blocks. 
 
5) Block sum of squares:  

( )
C

a

y
SS

j
i ij

BLK −= ∑ ∑ 2

 = Sum of ( )
block  in nsobservatio of no.

 sumblock 2

 for each  

block minus C. 

Note that the number of observations in a block is equal to the number of treatments. 
 
6) Residual sum of squares:  

SSRES = SSTOT – SSTRT – SSBLK  

 
By dividing the sums of squares with corresponding degrees of freedom mean squares are 
obtained:  

Mean square for blocks: 
1−

=
b
SSMS BLK

BLK  

Mean square for treatments: 
1−

=
a
SSMS TRT

TRT   

Mean square for residual: 
)1( )1( −−

=
ba

SSMS RES
RES  

 
 
13.1.2 Hypotheses Test - F test 

The hypotheses of interest are to determine if there are treatment differences. The null 
hypothesis H0 and alternative hypothesis H1 are stated as follows: 
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H0: τ1 = τ2 =... = τa, there are no differences among treatments  
H1: τi  ≠ τi’, for at least one pair (i,i’) a difference between treatments exists 

To test these hypotheses an F statistic can be used which, if H0 holds, has an F distribution 
with (a – 1) and (a – 1)(b – 1) degrees of freedom: 

RES

TRT

MS
MSF =  

The residual mean square, MSRES, is also the mean square for experimental error, which is 
an estimator of the population variance. For an α level of significance H0 is rejected if 
F > Fα,(a-1),(a-1)(b-1), that is, if the calculated F from the sample is greater than the critical 
value. The test for blocks is usually not of primary interest, but can be conducted 
analogously as for the treatments. The calculations can be summarized in an ANOVA table: 
 

Source  SS df MS = SS/df F 
Block SSBLK b – 1 MSBLK MSBLK/MSRES 
Treatment SSTRT a – 1 MSTRT MSTRT/MSRES 
Residual SSRES (a – 1)(b – 1) MSRES  
Total SSTOT ab – 1   

 
When only one set of treatments is present in each block, the SSRES is the same as the 
interaction of Blocks x Treatments. The block x treatment interaction is the appropriate 
error term for treatment. A significant F test for treatments can be thought of as indicating 
that treatments rank consistently across blocks. 

The estimators of treatments means are the sample arithmetic means. Estimation of 
standard errors depends on whether blocks are random or fixed. For fixed blocks the 
standard errors of treatment mean estimates are: 

b
MSs RES

yi
=.  

For random blocks the standard errors of treatment means estimates are: 

( )
b

MSs BLKRES
yi

2

.
σ̂+

=  

where 
a

MSMS RESBLK
BLK

−
=2σ̂  = variance component for blocks. 

 
For both fixed and random blocks, the standard errors of estimates of the differences 
between treatment means are: 







=− b

MSs RESyy ii

2
.. '

 

 
 



Chapter 13  Blocking  277 

 

Example: The objective of this experiment was to determine the effect of three treatments 
(T1, T2 and T3) on average daily gain (g/d) of steers. Steers were weighed and assigned to 
four blocks according to initial weight. In each block there were three animals to which 
treatments were randomly assigned. Therefore, a total of 12 animals were used. Data with 
means and sums are shown in the following table: 
 

 Blocks   

 I II III IV Σ treatments 
Treatment 

means 
T1 826 865 795 850 3336 834 
T2 827 872 721 860 3280 820 
T3 753 804 737 822 3116 779 

Σ blocks  
2406 2541 2253 2532 9732  

Block means  802 847 751 844  811 

 
Short-cut computations of sums of squares: 
1) Total sum: 

Σi Σj yij = (826 + ....... + 822) = 9732 

2) Correction for the mean:  

( )
( )( )

( ) 7892652
12

9732 2
2

===
∑∑

ba

y
C i j ij

  

3) Total (corrected) sum of squares:  

∑∑ −=
i j ijTOT CySS 2  = (8262 + ... + 8222) – 7892652 = 7921058 – 7892652 =  

= 28406 

4) Treatment sum of squares: 

( )
C

n

y
SS

i
i

j ij
TRT −= ∑

∑ 2

65367892652
4

3116
4

3280
4

3336 222

=−++=   

5) Block sum of squares: 

( )
C

n

y
SS

j
j

i ij
BLK −= ∑ ∑ 2

181987892652
3

2532
3

2253
3

2541
3

2406 2222

=−+++=   

6) Residual sum of squares: 

SSRES = SSTOT – SSTRT – SSBLK = 28406 – 6536 – 18198 = 3672 

The hypotheses are: 

H0: τ1 = τ2 =... = τa, there are no differences among treatments 
H1: τi  ≠ τi’, for at least one pair (i,i’) a difference between treatments exists 
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The ANOVA table is: 
 

Source  SS df MS F 
Block 18198 3 6066 9.91 
Treatment 6536 2 3268 5.34 
Residual 3672 6 612  
Total 28406 11   

 
The calculated F is: 

34.5
612
3268

===
RES

TRT

MS
MSF   

The critical value of F for testing treatments for 2 and 6 degrees of freedom and level of 
significance α = 0.05 is F0.05,2,6 = 5.14 (See Appendix B: Critical values of F distribution). 
Since the calculated F = 5.34 is greater than the critical value, H0 is rejected indicating that 
significant differences exist between sample treatment means. 
 
 
Example: Compute the efficiency of using randomized block design instead of completely 
randomized design.  
Recall from chapter 12 the efficiency of two experimental designs can be compared by 
calculating the relative efficiency (RE) of design 2 to design 1 (design 2 expected to have 
improvement in efficiency): 









+
+









+
+

= 2
11

1
2
22

2

)3(
1

)3(
1

sdf
df

sdf
dfRE  

defining the completely randomized design as design 1, and the randomized block design as 
design 2; s2

1 and s2
2 are experimental error mean squares, and df1 and df2 are the error 

degrees of freedom for the completely randomized design and the randomized block design, 
respectively.  
For the block design:  

SSRES  = 3672; s2
2 = MSRES = 612 and df2 = 6, SSBLK = 18198 

For the completely randomized design:  

SS’RES  = SSBLK + SSRES  = 18198 + 3672 = 21870 
df1 = 9 
s2

1 = SS’RES / df2 = 21870 / 9 = 2430  

The relative efficiency is: 

3.71
2430)39(
19

612)36(
16

=







+

+








+

+
=RE  

Since RE is much greater than one, the randomized block plan is better than the completely 
randomized design for this experiment.  
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13.1.3 SAS Example for Block Design 

The SAS program for the example of average daily gain of steers is as follows. Recall the 
data: 
 

 Blocks 

Treatments I II III IV 
T1 826 865 795 850 
T2 827 872 721 860 
T3 753 804 737 822 

 
SAS program: 
 
    DATA steer; 
       INPUT trt block $ d_gain @@; 
       DATALINES; 
    1 I 826    1 II 865    1 III 795    1 IV 850 
    2 I 827    2 II 872    2 III 721    2 IV 860 
    3 I 753    3 II 804    3 III 737    3 IV 822 
; 
PROC GLM; 
       CLASS block trt; 
       MODEL d_gain = block trt/ ; 
LSMEANS trt / P TDIFF STDERR ADJUST=TUKEY; 
RUN; 

 
Explanation: The GLM procedure was used. The CLASS statement defines categorical 
(class) variables. The statement: MODEL d_gain = block trt defines d_gain as the 
dependent, and block and trt as the independent variables. The LSMEANS statement 
calculates least squares means for trt corrected on all other effects in the model. The options 
after the slash are for computing standard errors and tests of difference between treatment 
means by using a Tukey test with the adjustment for multiple comparisons. 
 
SAS output: 
 
Dependent Variable: d_gain 
                          Sum of      Mean 
Source           DF      Squares      Square  F Value  Pr > F 
Model             5   24734.0000   4946.8000     8.08  0.0122 
Error             6    3672.0000    612.0000 
Corrected Total  11   28406.0000 
 
R-Square           C.V.      Root MSE       D_GAIN Mean 
0.870732       3.050386       24.7386            811.000 
 
Source    DF    Type III SS   Mean Square  F Value   Pr > F 
block       3    18198.0000    6066.0000     9.91    0.0097 
trt         2     6536.0000    3268.0000     5.34    0.0465 
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                     Least Squares Means 
         Adjustment for multiple comparisons: Tukey 
 
  trt           d_gain       Std Err     Pr > |T|   LSMEAN 
                LSMEAN        LSMEAN   H0:LSMEAN=0   Number 
 
  1          834.000000     12.369317        0.0001     1 
  2          820.000000     12.369317        0.0001     2 
  3          779.000000     12.369317        0.0001     3 
 
   T for H0: LSMEAN(i)=LSMEAN(j) / Pr > |T| 
 
         i/j       1         2         3 
         1     .      0.800327  3.144141 
                        0.7165    0.0456 
         2  -0.80033     .      2.343814 
              0.7165              0.1246 
         3  -3.14414  -2.34381     . 
              0.0456    0.1246 

 
Explanation: The first table is the ANOVA table for the Dependent Variable d_gain. The 
Sources of variability are Model, Error and Corrected Total. In the table are listed degrees 
of freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P value 
(Pr > F). In the next table the explained sources of variability are partitioned to block and 
trt. For trt, the calculated F and P values are 5.34 and 0.0465, respectively. The effect of 
treatments is significant. At the end of the output are least squares means (LSMEAN) with 
their standard errors (Std Err), and a Tukey test of difference between treatment groups. The 
test values for the differences between least squares means with corresponding P values are 
given. For example, in column 3 and row 1 numbers 3.144141 and 0.0456 denote the test 
values for the difference between treatments 1 and 3, and the P value, respectively.  
 

13.2 Randomized Block Design – Two or More Units per Treatment 
and Block  

In some situations there will be more experimental units in a block than there are treatments 
in the experiment. Treatments are repeated in each block. In the previous section there was 
just one experimental unit per treatment x block combination, and the experimental error 
was equal to the interaction between treatment x block. Consequently, it was impossible to 
test any effect of interaction between treatment and block. A way to test the interaction 
effect is to increase the number of experimental units to at least two per treatment x block 
combination. Consider again a treatments and b blocks, but with n experimental units per 
treatment x block combination. Thus, the number of experimental units within each block is 
(n a). Treatments are randomly assigned to those (n a) experimental units in each block. 
Each treatment is assigned to n experimental units within each block. 

For example consider an experiment with four blocks, three treatments, and six animals 
per block, that is, two animals per block x treatment combination. A design could be: 
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 Blocks 
 I II III IV 

No. 1 (T3) No. 7 (T3) No. 13 (T3) No. 19 (T1) 

No. 2 (T1) No. 8 (T2) No. 14 (T1) No. 20 (T2) 

No. 3 (T3) No. 9 (T1) No. 15 (T2) No. 21 (T3) 

No. 4 (T1) No. 10 (T1) No. 16 (T1) No. 22 (T3) 

No. 5 (T2) No. 11 (T2) No. 17 (T3) No. 23 (T2) 

Animal No. 
(Treatment) 

No. 6 (T2) No. 12 (T3) No. 18 (T2) No. 24 (T1) 

 
Observations can be shown sorted by treatments and blocks: 
 

 Blocks 
Treatment I II III IV 

T1 
y111 
y112 

y121 
y122 

y131 
y132 

y141 
y142 

T2 
y211 
y212 

y221 
y222 

y231 
y232 

y241 
y242 

T3 
y311 
y312 

y321 
y322 

y331 
y332 

y341 
y342 

 
Here, y111, y121,..., y342, or generally yijk denotes experimental unit k in treatment i and 
block j. 

 
The statistical model is: 

yijk = µ + τi + βj + τβij + εijk i = 1,...,a;  j = 1,...,b;  k = 1,…,n  

where: 
yijk =  observation k in  treatment i and block j  
µ = the overall mean  
τi = the effect of treatment i 
βj = the effect of block j 
τβij = the interaction effect of treatment i and block j. 
εijk = random error with mean 0 and variance σ2 
a = the number of treatments; b = the number of blocks; n = the number of 
observations in each treatment x block combination 

 
 
13.2.1 Partitioning Total Variability and Test of Hypotheses 

Again, the total variability is partitioned to sources of variability. In the samples, the total 
sum of squares can be partitioned to block sum of squares, treatment sum of squares, 
interaction sum of squares and residual sum of squares: 

SSTOT = SSTRT + SSBLK + SSTRT x BLK + SSRES 
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The corresponding degrees of freedom are: 

 (abn – 1) = (a – 1) + (b – 1) + (a – 1)(b – 1) + ab(n – 1) 

The sums of squares are: 

∑ ∑ ∑ −=
i j k ijkTOT yySS 2...)(  

∑∑∑ ∑ −=−=
i ii j k iTRT yybnyySS 22 ...)..(...)..(  

∑∑∑ ∑ −=−=
i ji j k jBLK yyanyySS 22 ...)..(...)..(  

TRTBLKi j ijTRTxBLK SSSSyynSS −−−= ∑ ∑ 2...).(  

∑ ∑ ∑ −=
i j k ijijkRES yySS 2.)(  

The sums of squares can be computed by using the short-cut computations: 
1) Total sum: 

Σi Σj Σk yijk  

2) Correction for the mean:  

( )
abn

y
C i j k ijk

2∑ ∑ ∑
=  

3) Total (corrected) sum of squares:  

SSTOT = Σi Σj Σk (yijk)2 – C 

4) Treatment sum of squares:  

( )
C

nb

y
SS

i

j k ijk

TRT −= ∑
∑ ∑ 2

  

5) Block sum of squares:  

( )
C

na

y
SS

j
i k ijk

BLK −= ∑ ∑∑ 2

 

6) Interaction sum of squares:  

( )
CSSSS

n

y
SS BLKTRTi j

k ijk
TRTxBLK −−−= ∑ ∑ ∑ 2

 

7) Residual sum of squares:  

SSRES = SSTOT – SSTRT – SSBLK – SSTRT x BLK  

Dividing sums of squares by appropriate degrees of freedom, gives the mean squares: 

Mean square for blocks: 
1−

=
b
SSMS BLK

BLK  
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Mean square for treatments: 
1−

=
a
SSMS TRT

TRT   

Mean square for interaction: 
)1( )1(

  
  −−

=
ba

SSMS BLKxTRT
BLKxTRT  

Mean square for residuals: 
)1( −

=
nab

SSMS RES
RES  

The sums of squares, degrees of freedom, and mean squares can be presented in an ANOVA 
table: 
 

Source  SS df MS = SS/df 
Block SSBLK b – 1 MSBLK 
Treatment SSTRT a – 1 MSTRT 

Treatment x Block SSTRT x 

BLK (a – 1)(b – 1) MSTRT x BLK 

Residual SSRES ab(n – 1) MSRES 
Total SSTOT abn – 1  

 
The hypotheses about block x treatment interactions in the population are: 

H0: τβ11 = τβ12 = ... = τβab  
H1: τβij ≠ τβi'j' for at least pair (ij,i'j') 

The hypotheses about treatment effects are: 

H0: τ1 = τ2 =... = τa , no treatment effect  
H1: τi  ≠ τi’, for at least one pair (i,i’), a difference  between treatments exists 

Recall that within blocks the treatments are assigned randomly on experimental units, and 
each animal is an experimental unit. Testing of hypotheses depends on whether blocks are 
defined as random or fixed. A block is defined as fixed if there is a small (finite) number of 
blocks and they represent distinct populations. A block is defined as random if blocks are 
considered a random sample from the population of blocks.  

When blocks are fixed and a block x treatment interaction is fitted, it is necessary to 
test the interaction first. If the effect of the interaction is significant the test for the main 
treatment effects is meaningless. However, if the treatment mean square is large compared 
to the interaction mean square it indicates that there is little reranking among treatments 
across blocks. The effect of block by treatment interaction is also fixed and it is possible to 
test the difference of estimates of particular combinations. On the contrary, when blocks are 
random the interaction is also assumed to be random, and it is hard to quantify different 
effects of treatments among blocks. If there is significant interaction, then it serves as an 
error term in testing the difference among treatments.  

The following table presents expected mean squares and appropriate tests for testing 
the effect of interaction and treatments when blocks are defined as fixed or random.  
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 Fixed blocks Random blocks 
Source  E(MS) F E(MS) F 

Block 
1

2
2

−
+

∑
b

a
j jβ

σ  
RES

BLK

MS
MS  22

BLKaσσ +  - 

Treatment  
1

2
2

−
+

∑
a

b
j jτ

σ  
RES

TRT

MS
MS  

1

2
2

  
2

−
++

∑
a

b
j j

BLKxTRT

τ
σσ  

BLKxTRT

TRT

MS
MS

  

 

Trt x Block 
( )

( )( )11

2

2

−−
+

∑ ∑
ba

b
i j ijτβ

σ  
RES

BLKxTRT

MS
MS    2

  
2

BLKxTRTσσ +  
RES

BLKxTRT

MS
MS    

Residual σ2    
 

2
BLKσ  and 2

TRTxBLKσ  are variance components for block and interaction. 
 
If there is no evidence that a treatment x block interaction exists, the model can be reduced 
to include only the effects of blocks and treatments. The appropriate error term for testing 
the effect of treatments will consist of the combined interaction and residual from the model 
shown above. 

Estimators of the populations treatment means are the arithmetic means of treatment 
groups ..iy , and estimators of the interaction means are the samples arithmetic means .ijy  
Estimation of the standard errors depend on whether blocks are random or fixed. For fixed 
blocks the standard errors of estimators of the treatment means are: 

nb
MSs RES

yi
=..  

Standard errors of estimators of interaction means are: 

n
MSs RES

yij
=.  

For random blocks standard errors of estimators of the treatment means are: 

( )
nb

MSs BLKRES
yi

2

..
σ̂+

=  

where 
a

MSMS RESBLK
BLK

−
=2σ̂  is the estimate of the variance component for blocks. 

 
For both fixed and random blocks, the standard errors of estimators of the differences 
between treatment means are: 







=− nb

MSs RESyy ii

2
.... '

 

Standard errors of estimators of the differences between interaction means are: 
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





=− n

MSs RESyy jiij

2
.. ''

 

 
 
Example: Recall that the objective of the experiment previously described was to determine 
the effect of three treatments (T1, T2 and T3) on average daily gain of steers, four blocks 
were defined. However, this time there are six animals available for each block. Therefore, 
a total of 4x3x2 = 24 steers were used. Treatments were randomly assigned to steers within 
block. The data are as follows: 
 

 Blocks 

Treatments I II III IV 

T1 
826 
806 

864 
834 

795 
810 

850 
845 

T2 
827 
800 

871 
881 

729 
709 

860 
840 

T3 
753 
773 

801 
821 

736 
740 

820 
835 

 
Short cut computations of sums of squares: 
 
1) Total sum: 

Σi Σj Σk yijk = (826 + 806 + ..... + 835) =19426 

2) Correction for the mean:  

( )
17.15723728

24
194262

2

===
∑∑ ∑

abn

y
C i j k ijk

 

3) Total (corrected) sum of squares:  

SSTOT = ΣiΣjΣk(yijk)2 – C = 8262 + 8062 + ...+ 8352 = 15775768 – 15723728.17 =  
= 52039.83 

4) Treatment sum of squares:  

( )
58.802517.15723728

8
6279

8
6517

8
6630 222

2

=−++=−= ∑ ∑ ∑
C

nb

y
SS

i
j k ijk

TRT  

5) Block sum of squares:  

( )
3816.83317.15723728

6
5050

6
4519

6
5072

6
4785 2222

2
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na

y
SS

j
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6) Interaction sum of squares:  

( )
=−−−= ∑∑ ∑ CSSSS

n
y

SS BLKTRTi j
k ijk

TRTxBLK

2

 

( ) ( ) ( ) 42808717157237288333816588025
2
835820...

2
871864

2
806826 222

.... =−−−
+

++
+

+
+  

7) Residual sum of squares:  

SSRES = SSTOT – SSTRT – SSBLK – SSTRT x BLK  =  
= 52039.83 – 8025.58 – 33816.83 – 8087.42 = 2110.00 

 
ANOVA table:  
 

Source  SS df MS 
Block 33816.83 3 11272.28 
Treatment 8025.58 2 4012.79 
Treatment x Block 8087.42 (2)(3) = 6 1347.90 
Residual 2110.00 (3)(4)(2 – 1) = 12 175.83 
Total 52039.83 23  

 
Tests for interaction and treatment effects when blocks are fixed include: 
 
F test for interaction: 

F = 67.7
83.175
90.1347

=   

F test for treatments: 

F = 82.22
83.175
79.4012

=   

The critical value for testing the interaction is F0.05,6,12 = 3.00, and for testing treatments is 
F0.05,2,12 = 3.89 (See Appendix B: Critical values of F distribution). Thus, at the 0.05 level of 
significance, H0 is rejected for both treatments and interaction. This indicates that there is an 
effect of treatments and that the effects are different in different blocks. It is useful to 
further compare the magnitude of treatment effects against the block x treatment interaction. 
If the ratio is large it indicates that there is little reranking of treatments among blocks. For 

this example the ratio is 
90.1347
79.4012 = 2.98. This ratio is not large thus although there is an 

effect of treatment compared to residual error, this effect is not large compared to the 
interaction. Thus, the effect of this treatment is likely to differ depending on the initial 
weights of steers to which it is applied. 
 
Tests for interaction and treatment effects when blocks are random include: 
F test for interaction:  
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F = 67.7
83.175
90.1347

=   

F test for treatments: 

F = 
90.1347
79.4012  = 2.98 

Note when blocks are defined as random there is no significant effect of treatments, since 
the critical value for this test is F0.05,2,6 = 5.14.   
 
 
13.2.2 SAS Example for Two or More Experimental Unit per Block x Treatment 

The SAS program for the example of daily gain of steers with two experimental units per 
treatment by block combination is as follows. Two approaches will be presented: blocks 
defined as fixed using the GLM procedure and blocks defined as random using the MIXED 
procedure. Recall the data: 
 

 Blocks 

Treatments I II III IV 

T1 
826 
806 

864 
834 

795 
810 

850 
845 

T2 
827 
800 

871 
881 

729 
709 

860 
840 

T3 
753 
773 

801 
821 

736 
740 

820 
835 

 
SAS program: 
 
DATA d_gain; 
INPUT trt  block $ d_gain @@; 
DATALINES; 
1   I 826   1   I 806   1 II 864   1 II 834 
1 III 795   1 III 810   1 IV 850   1 IV 845 
2   I 827   2   I 800   2 II 871   2 II 881 
2 III 729   2 III 709   2 IV 860   2 IV 840 
3   I 753   3   I 773   3 II 801   3 II 821 
3 III 736   3 III 740   3 IV 820   3 IV 835 
; 
PROC GLM; 
CLASS block trt; 
MODEL d_gain = block trt block*trt/; 
LSMEANS trt / TDIFF  STDERR ADJUST=TUKEY; 
LSMEANS block*trt / STDERR; 
RUN; 
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PROC MIXED; 
CLASS block trt; 
MODEL d_gain = trt/; 
RANDOM block block*trt; 
LSMEANS trt / DIFF ADJUST=TUKEY; 
RUN; 

 
Explanation: The GLM procedure was used to analyze the example with fixed blocks. The 
CLASS statement defines the categorical (class) variables. The MODEL statement defines 
d_gain as the dependent, and block and trt as the independent variables. Also, the block*trt 
interaction is defined. The LSMEANS statement calculates least squares means corrected on 
all other effects in the model. The options after the slash are for computing standard errors 
and tests of difference between treatment means by using a Tukey test. The second 
LSMEANS statement is for the interaction of block*trt. The test of difference can be done 
in the same way as for trt. It is not shown here because of the length of the output.  

The MIXED procedure was used to analyze the example with random blocks. Most of 
the statements are similar to those in the GLM procedure. Note, the RANDOM statement 
defines block and block*trt interaction as random effects. 
 
SAS output of the GLM procedure for fixed blocks: 
 
Dependent Variable: d_gain 
 
                        Sum of 
Source            DF    Squares     Mean Square  F Value   Pr > F 
Model             11   49929.83333  4539.07576    25.81    <.0001 
Error             12    2110.00000   175.83333 
Corrected Total   23   52039.83333 
 
  R-Square     Coeff Var      Root MSE    d_gain Mean 
  0.959454      1.638244      13.26022       809.4167 
 
Source     DF     Type III SS     Mean Square    F Value    Pr > F 
block       3     33816.83333     11272.27778      64.11    <.0001 
trt         2      8025.58333      4012.79167      22.82    <.0001 
block*trt   6      8087.41667      1347.90278       7.67    0.0015 
 
                      Least Squares Means 
           Adjustment for Multiple Comparisons: Tukey 
 
               d_gain        Standard                  LSMEAN 
  trt          LSMEAN           Error    Pr > |t|      Number 
 
  1        828.750000        4.688194      <.0001           1 
  2        814.625000        4.688194      <.0001           2 
  3        784.875000        4.688194      <.0001           3 
 
       Least Squares Means for Effect trt 
    t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
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           Dependent Variable: d_gain 
 
 i/j              1             2             3 
    1                    2.130433      6.617539 
                           0.1251        <.0001 
    2      -2.13043                    4.487106 
             0.1251                      0.0020 
    3      -6.61754      -4.48711 
             <.0001        0.0020 
 
              Least Squares Means 
 
                         d_gain        Standard 
   block    trt          LSMEAN           Error    Pr > |t| 
   I        1        816.000000        9.376389      <.0001 
   I        2        813.500000        9.376389      <.0001 
   I        3        763.000000        9.376389      <.0001 
   II       1        849.000000        9.376389      <.0001 
   II       2        876.000000        9.376389      <.0001 
   II       3        811.000000        9.376389      <.0001 
   III      1        802.500000        9.376389      <.0001 
   III      2        719.000000        9.376389      <.0001 
   III      3        738.000000        9.376389      <.0001 
   IV       1        847.500000        9.376389      <.0001 
   IV       2        850.000000        9.376389      <.0001 
   IV       3        827.500000        9.376389      <.0001 

 
Explanation: Following a summary of class level information (not shown), the first table is 
an ANOVA table for the Dependent Variable d_gain. The Sources of variability are Model, 
Error and Corrected Total. The descriptive statistics are listed next including the coefficient 
of determination (R-Square = 0.959454), the coefficient of variation 
(Coeff Var = 1.638244), the standard deviation (Root MSE = 13.26022) and the mean of the 
dependent variable (d-gain Mean = 809.4167). In the next table the explained sources of 
variability are partitioned to block, trt and block*trt. In the table are listed the degrees of 
freedom (DF), Sums of Squares (Type III SS), Mean Square, calculated F (F value) and P 
value (Pr > F). For trt, the calculated F and P values are 22.82 and <0.001, respectively. 
The effect of the interaction of block*trt is significant (F and P values are 7.67 and 0.0015, 
respectively). At the end of output is a table of least squares means (LSMEAN) with their 
standard errors (Std Err), and then an array of Tukey tests between treatment groups. These 
indicates that treatment 1 is different than treatment 3 (P<0.0001) and treatment 2 is 
different than treatment 3 (P=0.002), but treatment 1 and treatment 2 are not different 
(P=0.1251). The final table of the output shows the block * trt LSMEAN and their Standard 
Error(s). 
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SAS output of the MIXED procedure for random blocks: 
 
             Covariance Parameter 
                  Estimates 
 
            Cov Parm      Estimate 
 
            block          1654.06 
            block*trt       586.03 
            Residual        175.83 
 
 
             Type 3 Tests of Fixed Effects 
 
                   Num     Den 
     Effect         DF      DF    F Value    Pr > F 
     trt             2       6       2.98    0.1264 
 
                    Least Squares Means 
 
                     Stan 
Effect  trt  Est     Error  DF  t Val  Pr>|t| Alpha  Lower   Upper 
trt     1   828.75  24.1247  6  34.35  <.0001  0.05  769.72  887.78 
trt     2   814.62  24.1247  6  33.77  <.0001  0.05  755.59  873.66 
trt     3   784.87  24.1247  6  32.53  <.0001  0.05  725.84  843.91 
 
          Differences of Least Squares Means 
 
                       Stan 
Effect  tr_tr   Est    Error  DF  t Val  Pr > |t|  Adjustment  Adj P  Alpha 
 
trt     1  2  14.125  18.3569  6  0.77   0.4708  Tukey-Kramer  0.7339  0.05 
trt     1  3  43.875  18.3569  6  2.39   0.0540  Tukey-Kramer  0.1174  0.05 
trt     2  3  29.750  18.3569  6  1.62   0.1562  Tukey-Kramer  0.3082  0.05 
 
                Differences of Least Squares Means 
 
                                               Adj         Adj 
  Effect  trt  _trt     Lower       Upper    Lower       Upper 
  trt     T1   T2    -30.7927     59.0427        .           . 
  trt     T1   T3     -1.0427     88.7927        .           . 
  trt     T2   T3    -15.1677     74.6677        .           . 

 
Explanation: The MIXED procedure gives (co)variance components (Covariance 
Parameter Estimates) and F tests for fixed effects (Type 3 Test of Fixed Effects). In the table 
titled Least Squares Means are Estimates with Standard Errors. In the table Differences of 
Least Squares Means are listed the differences between all possible pairs of treatment levels 
(Estimate). Further, those differences are tested using the Tukey-Kramer procedure, which 
adjusts tests on multiple comparison and unbalanced designs. Thus, the correct P value is 
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the adjusted P value (Adj P). For example, the P value for the difference between treatments 
1 and 3 is 0.1174. The MIXED procedure calculates appropriate standard errors for the least 
squares means and differences between them. 
 

13.3 Power of Test 

Power of test for the randomized block design can be calculated in a similar manner as 
shown for the one-way analysis of variance by using central and noncentral F distributions. 
Recall that if H0 holds, then the F test statistic follows a central F distribution with 
corresponding degrees of freedom. However, if H1 holds, then the F statistic has a 

noncentral F distribution with a noncentrality parameter 
RES

TRT

MS
SS

=λ  and corresponding 

degrees of freedom. Here, SSTRT denotes the treatment sum of squares, and MSRES denotes 
the residual mean square. The power is a probability: 

Power = P (F > Fα,df1,df2 = Fβ)  

using a noncentral F distribution for H1. Here, α is the level of significance, df1 and df2 are 
degrees of freedom for treatment and residual, respectively, and Fα,df1,df2 is the critical value. 
 
 
13.3.1 SAS Example for Calculating Power  

Example: Calculate the power of test of the example examining the effects of three 
treatments on steer average daily gain. 
 
The ANOVA table was: 
 

Source  SS df MS F 
Block 18198 3 6066 9.91 
Treatment 6536 2 3268 5.34 
Residual 3672 6 612  
Total 28406 11   

 
The calculated F value was: 

34.5
612
3268

===
RES

TRT

MS
MSF  

The power of test is:  

Power = P (F > F0.05, 2,12 = Fβ ) 

 using a noncentral F distribution for H1. The estimated noncentrality parameter is: 

68.10
612
6536

===
RES

TRT

MS
SSλ  
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Using the noncentral F distribution with 2 and 12 degrees of freedom and the noncentrality 
parameter λ = 10.68, the power is 0.608. The power for blocks can be calculated in a similar 
manner, but is usually not of primary interest.  
 
To compute the power of test with SAS, the following statements are used: 
 
DATA a; 
alpha=0.05; 
df1=2; 
df2=6; 
sstrt=6536; 
mse=612; 
lambda=sstrt/mse;  
Fcrit=FINV(1-alpha,df1,df2);   
power=1-CDF('F',Fcrit,df1,df2,lambda); 
PROC PRINT; 
RUN; 

 
Explanation: First, the following are defined: alpha = significance level, df1 = treatment 
degrees of freedom, df2 = residual degrees of freedom, sstrt = treatment sum of squares, 
mse = residual (error) mean square, the estimated variance. Then, the noncentrality 
parameter (lambda) and the critical value (Fcrit) for the given degrees of freedom and level 
of significance are calculated. The critical value is computed by using the FINV function, 
which must have a cumulative value of percentiles (1 – α = 0.95) and degrees of freedom, 
df1 and df2. The power is calculated by using the CDF function. This is a cumulative 
function of the F distribution which needs as input the critical value, degrees of freedom 
and the noncentrality parameter lambda.  As an alternative to using CDF('F',Fcrit,df1, 
df2,lambda) the function PROBF(Fcrit,df1,df2,lambda) can  be used. The PRINT procedure 
gives the following SAS output: 
 
alpha   df1   df2   sstrt   mse    lambda    Fcrit     power 
 
0.05     2    6     6536   612   10.6797   5.14325   0.60837 

 
Thus, the power is 0.608. 
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Exercises 

13.1. The objective of an experiment was to analyze the effects of four treatments on 
ovulation rate in sows. The treatments are PG600, PMSG, FSH and saline. A sample of 20 
sows was randomly chosen and they were assigned to five pens. The treatments were 
randomly assigned to the four sows in each pen. Are there significant differences between 
treatments? The data are as follows: 
 

 Pens 
Treatment I II III IV V 

FSH 13 16 16 14 14 
PG600 14 14 17 17 15 
PMSG 17 18 19 19 16 
Saline 13 11 14 10 13 
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Chapter 14  
 
Change-over Designs 

Change-over experimental designs have two or more treatments assigned to the same 
animal, but in different periods. Each animal is measured more than once, and each 
measurement corresponds to a different treatment. The order of treatment assignments is 
random. In effect, each animal is used as a block, and generally called a subject. Since 
treatments are exchanged on the same animal, this design is called a change-over or cross-
over design. With two treatments the design is simple; animals are randomly assigned to 
two groups, to the first group the first treatment is applied, and to the second group the 
second treatment. After some period of treating, the treatments are exchanged. To the first 
group the second treatment is applied, and to the second group the first treatment is applied. 
Depending on the treatment, it may be good to rest the animals for a period and not to use 
measurements taken during that rest period, in order to avoid aftereffects of treatments. The 
number of treatments can be greater than the number of periods, thus, different animals 
receive different sets of treatments. The animal is then an incomplete block. However, such 
plans lose on precision. Here, only designs with equal numbers of treatments and periods 
will be described. 
 

14.1 Simple Change-over Design  

Consider an experiment for testing differences between treatments, with all treatments 
applied on each subject or animal. The number of treatments, a, is equal to the number of 
measurements per subject, and the number of subjects is n. The order of treatment is 
random, but equal numbers of subjects should receive each treatment in every period.  For 
example, for three treatments (T1, T2 and T3) and n subjects a schema of an experiment can 
be: 
 

Period Subject 1 Subject 2 Subject 3 … Subject n
1 T2 T1 T2 … T3 
2 T1 T3 T3 … T2 
3 T3 T2 T1 … T1 

 
Note that an experimental unit is not the subject or animal, but one measurement on the 
subject. In effect, subjects can be considered as blocks, and the model is similar to a 
randomized block design model, with the subject effect defined as random: 

yij = µ + τi + SUBj + εij  i = 1,...,a;   j = 1,...,n;  

where: 
yij = observation on subject (animal) j in treatment i  
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µ = the overall mean 
τi = the fixed effect of treatment i  
SUBj = the random effect of subject (animal) j with mean 0 and variance σ2

S  
εij = random error with mean 0 and variance σ2 
a = number of treatments; n = number of subjects 

 
Total sum of squares is partitioned to sums of squares between subjects and within subjects: 

SSTOT = SSSUB + SSWITHIN SUBJECT  

Further, the sum of squares within subjects is partitioned to the treatment sum of squares 
and residual sum of squares: 

SSWITHIN SUBJECT = SSTRT + SSRES 

Then, the total sum of squares is: 

SSTOT = SSSUB + SSTRT + SSRES 

with corresponding degrees of freedom: 

(an – 1) = (n – 1) + (a – 1) + (n – 1)(a – 1) 

The sums of squares are: 

∑∑ −=
i j ijTOT yySS 2..)(  

∑∑∑ −=−=
i ji j jSUB yyayySS 22 ..).(..).(  

∑∑∑ −=−=
i iii j iTRT yynyySS 22 ..).(..).(  

∑ ∑ −=
i j jijSUBJECTSWITHIN yySS 2

 ).(  

∑∑ +−−=
i j jiiijRES yyyySS 2..)..(  

By dividing the sums of squares by their corresponding degrees of freedom the mean 
squares are obtained: 

Mean square for subjects: 
1−

=
n
SSMS SUB

SUB  

Mean square within subjects: 
)1( 

 
 −

=
an

SSMS SUBJECTWITHIN
SUBJECTWITHIN  

Mean square for treatments: 
1−

=
a
SSMS TRT

TRT   

Mean square for experimental error (residual): 
)1( )1( −−

=
na

SSMS RES
RES  

The null and alternative hypotheses are: 

H0: τ1 = τ2 =... = τa, no treatment effects 
H1: τi  ≠ τi’ for at least one pair (i,i’), a difference exists between treatments 
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The test statistic is: 

RES

TRT

MS
MSF =  

with an F distribution with (a – 1) and (a – 1)(n – 1) degrees of freedom, if H0 holds. For α 
level of significance H0 is rejected if F > Fα,(a-1),(a-1)(n-1), that is, if the calculated F from the 
sample is greater than the critical value. 
 
The results can be summarized in an ANOVA table: 
 

Source  SS df MS = SS/df F 
Between subjects SSSUB b – 1 MSSUB  
Within subjects SSWITHIN SUB n(a – 1) MSWITHIN SUB  
       Treatment SSTRT a – 1 MSTRT MSTRT/MSRES 
       Residual SSRES (n – 1)(a – 1) MSRES  

 
The estimators of treatments means are the sample arithmetic means. The standard errors of 
the treatment mean estimators are: 

( )
n

MSs SRES
yi

2

.
σ̂+

=  

where 
a

MSMS RESSUB
S

−
=2σ̂  = variance component for subjects 

 
The standard errors of estimators of the differences between treatment means are: 







=− n

MSs RESyy i

2
'1

 

The change-over design will have more power than a completely random design if the 
variability between subjects is large. The MSRES will be smaller and consequently, it is more 
likely that a treatment effect will be detected. 
 
 
 
Example: The effect of two treatments on milk yield of dairy cows was investigated. The 
experiment was conducted as a 'change-over' design, that is, on each cow both treatments 
were applied in different periods. Ten cows in the third and fourth month of lactation were 
used. The order of treatments was randomly assigned. The following average milk yields in 
kg were measured: 
 

BLOCK I       
Period Treatment Cow 1 Cow 4 Cow 5 Cow 9 Cow 10 

1 1 31 34 43 28 25 
2 2 27 25 38 20 19 
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BLOCK II       
Period Treatment Cow 2 Cow 3 Cow 6 Cow 7 Cow 8 

1 2 22 40 40 33 18 
2 1 21 39 41 34 20 

 
The hypotheses are: 

H0: τ1 = τ2, there is no difference between treatments  
H1: τ1  ≠ τ2, there is a difference between treatments 

The ANOVA table is: 
 

Source  SS df MS F 
Between subjects 1234.800 9 137.200  
Within subjects 115.000 10 11.500  
       Treatment 57.800 1 57.800 9.09 
       Residual 57.200 9 6.356  
Total 1349.800 19   

 
If H0 holds, the F statistic has an F distribution with 1 and 9 degrees of freedom. The 
calculated F value from the samples is: 

09.9
356.6
200.57

===
RES

TRT

MS
MSF   

Since the calculated F = 9.09 is greater than the critical value F0.05,1,9 = 5.12, H0 is rejected 
at the 0.05 level of significance.  

This was a very simplified approach. Because of possible effects of the period of 
lactation and/or order of treatment application, it is good to test those effects as well.  
 

14.2 Change-over Designs with the Effects of Periods  

Variability among measurements can also be explained by different periods. For example, in 
an experiment with dairy cows, milk yield depends also on stage of lactation. A way to 
improve the precision of the experiment is by including the effect of period in the change-
over model. Further, the effect of order of treatment application can be included. A possible 
model is: 

yijkl = µ + τi + βk + SUB(β)jk + tl + εijkl  

   i = 1,…,a;  j = 1,…,nk,  k = 1,…, b; l = 1,..,a  
where: 

yijkl = observation on subject j with treatment i, order of treatment k and period l 
µ = the overall mean 
τi = the fixed effect of treatment i  
βk = the effect of order k of applying treatments  
SUB(β)jk = the random effect of subject j within order k with mean 0 and variance 
σ2

g 
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tl = the effect of period l  
εijkl = random error with mean 0 and variance σ2 
a = number of treatments and periods; b = number of orders; nk = number of 
subjects within order k; n = Σknk = total number of subjects 

 
The test statistic for testing the effect of treatments is: 

RES

TRT

MS
MSF =   

which has an F distribution with (a – 1) and (a – 1)(n – 2) degrees of freedom, if H0 holds. 
For α level of significance H0 is rejected if F > Fα,(a-1),(a-1)(n-2), that is, if the calculated F from 
the sample is greater than the critical value. 
 
The test statistic for testing the effects of order is: 

)(ORDERSUB

ORDER

MS
MSF =   

The results can be summarized in the following ANOVA table: 
 
Source  SS df MS = SS/df F 
Order SSORD b – 1 MSORD MSORD/MSSUB 
Subject within order SS SUB Σk(nk – 1) = n – b MS SUB  
Period SSt a – 1 MSt MSt/MSRES 
Treatment SSTRT a – 1 MSTRT MSTRT/MSRES 
Residual SSRES (a – 1)(n – 2) MSRES  
Total SSTOT an – 1   
 
 
Example: Using the previous example examining the effects of two treatments on milk 
yield, include the effects of periods and order of treatment in the model. Order is defined as 
order I if treatment 1 is applied first, and order II if treatment 1 is applied second. Recall the 
data: 
 

ORDER I       
Period Treatment Cow 1 Cow 4 Cow 5 Cow 9 Cow 10 

1 1 31 34 43 28 25 
2 2 27 25 38 20 19 

 
ORDER II       

Period Treatment Cow 2 Cow 3 Cow 6 Cow 7 Cow 8 
1 2 22 40 40 33 18 
2 1 21 39 41 34 20 

The formulas for hand calculation of these sums of squares are lengthy and thus have not 
been shown.  The SAS program for their calculation is presented in section 14.5.1. 
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The results are shown in the ANOVA table: 
 

Source  SS df MS F 
Order 16.20 1 16.200 0.11 
Subject within order 1218.60 8 152.325  
Period 45.00 1 45.000 29.51 
Treatment 57.80 1 57.800 37.90 
Residual 12.20 8 1.525  

 
The effects of treatment and period are significant, while the effect of treatment order has 
not affected the precision of the experiment. The residual mean square (experimental error) 
is smaller in the model with periods comparing to the model without periods. Inclusion of 
periods has increased the precision of the model and the possibility that the same conclusion 
could be obtained with fewer cows.  
 
 
14.2.1 SAS Example for Change-over Designs with the Effects of Periods  

The SAS program for the example with the effect of two treatments on milk yield of dairy 
cows is as follows. Recall the data: 
 

ORDER I       
Period Treatment Cow 1 Cow 4 Cow 5 Cow 9 Cow 10 

1 1 31 34 43 28 25 
2 2 27 25 38 20 19 

 
ORDER II       

Period Treatment Cow 2 Cow 3 Cow 6 Cow 7 Cow 8 
1 2 22 40 40 33 18 
2 1 21 39 41 34 20 

 
SAS program: 
 
DATA Cows; 
INPUT period trt order cow milk @@; 
DATALINES; 
1 1 1  1 31        1 2 2  2 22 
2 2 1  1 27        2 1 2  2 21 
1 1 1  4 34        1 2 2  3 40 
2 2 1  4 25        2 1 2  3 39 
1 1 1  5 43        1 2 2  6 40 
2 2 1  5 38        2 1 2  6 41 
1 1 1  9 28        1 2 2  7 33 
2 2 1  9 20        2 1 2  7 34 
1 1 1 10 25        1 2 2  8 18 
2 2 1 10 19        2 1 2  8 20 
; 
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PROC MIXED ; 
CLASS trt cow period order; 
MODEL milk = order trt period; 
RANDOM cow(order) ; 
LSMEANS trt/ PDIFF ADJUST=TUKEY ; 
RUN; 

 
Explanation: The MIXED procedure is used because of the defined random categorical 
variable included in the model. The CLASS statement defines the categorical (class) 
variables. The MODEL statement defines the dependent variable milk, and independent 
variables trt, period and order. The RANDOM statement indicates that cow (order) is 
defined as a random variable. The LSMEANS statement calculates treatment means. The 
PDIFF option tests significance between all pairs of means.  
 
SAS output: 
 
                 Covariance Parameter 
                      Estimates 
 
               Cov Parm        Estimate 
               cow(order)      75.4000 
               Residual         1.5250 
 
            Type 3 Tests of Fixed Effects 
 
                  Num     Den 
    Effect         DF      DF    F Value    Pr > F 
    order          1       8       0.11    0.7527 
    trt            1       8      37.90    0.0003 
    period         1       8      29.51    0.0006 
 
                    Least Squares Means 
 
                             Standard 
 Effect    trt   Estimate      Error    DF    t Value    Pr > |t| 
 trt        1    31.6000      2.7735     8      11.39      <.0001 
 trt        2    28.2000      2.7735     8      10.17      <.0001 
 
                 Differences of Least Squares Means 
 
                                 Standard 
 Effect  trt  _trt  Estimate      Error   DF  t Value   Pr > |t| 
 trt      1     2    3.4000     0.5523     8     6.16     0.0003 
 
                      Differences of Least Squares Means 
 
             Effect  trt   _trt   Adjustment       Adj P 
             trt      1      2   Tukey-Kramer      0.0003 
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Explanation: The MIXED procedure gives estimates of variance components for random 
effects (Covariance Parameter Estimates). Here the random effects are cow(order) and 
Residual. Next, the F test for the fixed effects (Type 3 Tests of Fixed Effects) are given. In 
the table are listed Effect, degrees of freedom for the numerator (Num DF), degrees of 
freedom for the denominator (Den DF), F Value and P value (Pr > F). The P value for 
treatments is 0.0003. In the Least Squares Means table the least squares means (Estimates) 
together with their Standard Error are shown. In the Differences of Least Squares Means 
table the Estimates of mean differences with their Standard Error and P values  (Pr > |t|) 
are shown.  
 

14.3 Latin Square 

In the Latin square design treatments are assigned to blocks in two different ways, usually 
represented as columns and rows. Each column and each row are a complete block of all 
treatments. Hence, in a Latin square three explained sources of variability are defined: 
columns, rows and treatments.  A particular treatment is assigned just once in each row and 
column. Often one of the blocks corresponds to animal and the other to period. Each animal 
will receive all treatment in different periods. In that sense, the Latin square is a change-
over design. The number of treatments (r) is equal to the number of columns and rows. The 
total number of measurements (observations) is equal to r2. If treatments are denoted with 
capital letters (A, B, C, D, etc.) then examples of 3 x 3 and 4 x 4 Latin squares are: 
 

A C B C A B A B D C C D B A 
B A C A B C C A B D D B A C 
C B A B C A B D C A B A C D 
  D C A B A C D B 

 
 
Example: Assume the number of treatments r = 4. Treatments are denoted T1, T2, T3 and T4. 
Columns and rows denote periods and animals, respectively. A possible design could be: 
 

 Columns (Animals) 
Rows 

(Periods) 1 2 3 4 

1 T1 T3 T2 T4 

2 T3 T4 T1 T2 

3 T2 T1 T4 T3 

4 T4 T2 T3 T1 
 
If yij(k) denotes a measurement in row i and column j, and with the treatment k, then a design 
of Latin square is: 
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 Columns (Animals) 
Rows 
(Periods) 1 2 3 4 

1 y11(1) y12(3) y13(2) y14(4) 

2 y21(3) y22(4) y23(1) y24(2) 

3 y31(2) y32(1) y33(4) y34(3) 

4 y41(4) y42(2) y43(3) y44(1) 
 
 
The model for a Latin square is: 

yij(k) = µ + ROWi + COLj + τ(k) + εij(k) i,j,k = 1,...,r 

where: 
yij(k) = observation ij(k)  
µ = the overall mean 
ROWi = the effect of row i  
COLj = the effect of column j  
τ(k) = the fixed effect of treatment k  
εij(k) = random error with mean 0 and variance σ2 
r = the number of treatments, rows and columns  

 
The total sum of squares is partitioned to the sum of squares for columns, rows, treatments 
and residual: 

SSTOT = SSROW + SSCOL + SSTRT + SSRES  

The corresponding degrees of freedom are: 

r2 – 1 = (r – 1) + (r – 1) + (r – 1) + (r – 1)(r – 2) 

The sums of squares are: 

∑ ∑ −=
i j kijTOT yySS 2

)( ..)(  

∑ −=
i iROW yyrSS 2..).(  

∑ −=
j jCOL yyrSS 2..).(  

∑ −=
k kTRT yyrSS 2..)(  

∑∑ +−−−=
i j kjiijRES yyyyySS 2..)2..(  

The sum of squares can be calculated with a short cut computation: 
 
1) Total sum: 

Σi Σj yij(k) 

2) Correction factor for the mean: 

( )
2

2
)(

r

y
C i j kij∑∑

=  
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3) Total (corrected) sum of squares:  

SSTOT = Σi Σj (yij(k))2 – C 

4) Row sum of squares:  

( )
C

r

y
SS

i
j kij

ROW −= ∑
∑ 2

)(
 

5) Column sum of squares:  

( )
C

r

y
SS

j
i kij

COL −= ∑ ∑ 2
)(  

6) Treatment sum of squares:  

( )
C

r

y
SS

k
i j kij

TRT −= ∑
∑∑ 2

)(
 

7) Residual sum of squares:  

SSRES = SSTOT – SSROW – SSCOL – SSTRT  
 
Dividing the sums of squares by their corresponding degrees of freedom yields the 
following mean squares: 

Mean square for rows: 
1−

=
r

SSMS ROW
ROW  

Mean square for columns: 
1−

=
r

SSMS COL
COL  

Mean square for treatments: 
1−

=
r
SSMS TRT

TRT  

Mean square for experimental error: 
)2( )1( −−

=
rr

SSMS RES
RES  

The null and alternative hypotheses are: 

H0: τ1 = τ2 =... = τa, no treatment effects  
H1: τi  ≠ τi’, for at least one pair (i,i’), a difference exists between treatments  

An F statistic is used for testing the hypotheses: 

RES

TRT

MS
MSF =  

which, if H0 holds, has an F distribution with (r – 1) and (r – 1)(r – 2) degrees of freedom. 
For the α level of significance H0 is rejected if F > Fα,(r-1),(r-1)(r-2), that is, if the calculated F 
from the sample is greater than the critical value. Tests for columns and rows are usually not 
of primary interest, but can be done analogously as for the treatments. 
 
The results can be summarized in an ANOVA table: 
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Source  SS df MS F 
Row SSROW r – 1 MSROW MSROW/MSRES 
Column SSCOL r – 1 MSCOL MSCOL/MSRES 
Treatment SSTRT r – 1 MSTRT MSTRT/ MSRES 
Residual SSRES (r – 1)(r – 2) MSRES  
Total SSTOT r2 – 1   

 
It is possible to reduce the experimental error by accounting for column and row variability. 
Note that columns and rows can be defined as additional factors, but their interaction is 
impossible to calculate. If an interaction exists, the Latin square cannot be used. Similarly as 
with classical 'change-over' designs, one must be careful because carryover effects of 
treatments can be confounded with the effect of the treatment applied in the next period. 
 
 
Example: The aim of this experiment was to test the effect of four different supplements 
(A, B, C and D) on hay intake of fattening steers. The experiment was designed as a Latin 
square with four animals in four periods of 20 days. The steers were housed individually. 
Each period consists of 10 days of adaptations and 10 days of measuring. The data in the 
following table are the means of 10 days: 
 
 Steers  
Periods 1 2 3 4 Σ 
1 10.0(B) 9.0(D) 11.1(C) 10.8(A) 40.9 
2 10.2(C) 11.3(A) 9.5(D) 11.4(B) 42.4 
3 8.5(D) 11.2(B) 12.8(A) 11.0(C) 43.5 
4 11.1(A) 11.4(C) 11.7(B) 9.9(D) 44.1 

Σ 39.8 42.9 45.1 43.1 170.9 

 
The sums for treatments: 
 
 A B C D Total 

Σ 46.0 44.3 43.7 36.9 170.9 

 
 
1) Total sum: 

Σi Σj yij(k) = (10.0 + 9.0 + ...... + 9.9) = 170.9 

2) Correction factor for the mean: 
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3) Total (corrected) sum of squares:  

SSTOT = Σi Σj (yij(k))2 – C = (10.0)2 + (9.0)2 + ..... + (9.9)2 – 1825.4256 = 17.964  

4) Row sum of squares:  
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5) Column sum of squares:  
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6) Treatment sum of squares:  
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7) Residual sum of squares:  

SSRES = SSTOT – SSROW – SSCOL – SSTRT = 17.964375 – 1.481875 – 3.591875 – 12.021875 =  
= 0.868 

 
The ANOVA table: 
 

Source  SS df MS F 
Rows (periods) 1.482 3 0.494 3.41 
Columns (steers) 3.592 3 1.197 8.26 
Treatments 12.022 3 4.007 27.63 
Residual 0.868 6 0.145  
Total 17.964 15   

 
The critical value for treatments is F0.05,3,6 = 4.76. The calculated F = 27.63 is greater than 
the critical value, thus, H0 is rejected, and it can be concluded that treatments influence hay 
intake of steers.  
 
 
 
14.3.1 SAS Example for Latin Square 

The SAS program for a Latin square is shown for the example measuring intake of steers. 
Recall that the aim of the experiment was to test the effect of four different supplements (A, 
B, C and D) on hay intake of fattening steers. The experiment was defined as a Latin square 
with four animals in four periods of 20 days. The data are: 
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 Steers 
Periods 1 2 3 4 
1 10.0(B) 9.0(D) 11.1(C) 10.8(A) 
2 10.2(C) 11.3(A) 9.5(D) 11.4(B) 
3 8.5(D) 11.2(B) 12.8(A) 11.0(C) 
4 11.1(A) 11.4(C) 11.7(B) 9.9(D) 

 
SAS program: 
 
DATA a; 
    INPUT period steer suppl $ hay @@; 
    DATALINES; 
  1 1 B 10.0        3 1 D  8.5       
  1 2 D  9.0        3 2 B 11.2       
  1 3 C 11.1        3 3 A 12.8       
  1 4 A 10.8        3 4 C 11.0       
  2 1 C 10.2        4 1 A 11.1       
  2 2 A 11.3        4 2 C 11.4       
  2 3 D  9.5        4 3 B 11.7       
  2 4 B 11.4        4 4 D  9.9       

; 
 PROC GLM; 
      CLASS period steer suppl; 
      MODEL hay = period steer suppl; 
      LSMEANS suppl / STDERR P TDIFF ADJUST=TUKEY; 
 RUN; 

 
Explanation: The GLM procedure was used. The CLASS statement defines categorical 
(class) variables. The MODEL statement defines hay as the dependent and period, steer and 
suppl as independent variables. The LSMEANS statement calculates the treatment means. 
The options after the slash request standard errors and test the differences between means 
by using a Tukey test. 
 
SAS output: 
 
Dependent Variable: hay 
                         Sum of 
Source           DF      Squares   Mean Square   F Value   Pr > F 
Model             9  17.09562500    1.89951389     13.12   0.0027 
Error             6   0.86875000    0.14479167 
Corrected Total  15  17.96437500 
 

        R-Square     Coeff Var      Root MSE    hay Mean 
        0.951640      3.562458      0.380515       10.68125 
 

Source     DF    Type III SS    Mean Square   F Value   Pr > F 
period      3     1.48187500     0.49395833      3.41   0.0938 
steer       3     3.59187500     1.19729167      8.27   0.0149 
suppl       3    12.02187500     4.00729167     27.68   0.0007 
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                     Least Squares Means 
           Adjustment for Multiple Comparisons: Tukey 
 
              hay        Standard                  LSMEAN 
suppl       LSMEAN           Error    Pr > |t|      Number 
  A         11.5000000       0.1902575      <.0001           1 
  B         11.0750000       0.1902575      <.0001           2 
  C         10.9250000       0.1902575      <.0001           3 
  D          9.2250000       0.1902575      <.0001           4 
 
              Least Squares Means for Effect suppl 
             t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                    Dependent Variable: hay 
 
   i/j       1             2             3             4 
    1                  1.579546      2.137032      8.455214 
                       0.4536        0.2427        0.0006 
    2    -1.57955                    0.557487      6.875669 
          0.4536                     0.9411        0.0019 
    3    -2.13703      -0.55749                    6.318182 
          0.2427        0.9411                     0.0030 
    4    -8.45521      -6.87567     -6.31818 
          0.0006        0.0019       0.0030 

 
Explanation: The first table is the ANOVA table for the Dependent Variable hay. The 
Source of variability are Model, residual (Error) and Corrected Total. In the table are listed 
degrees of freedom (DF), Sum of Squares, Mean Square, calculated F value and P value 
(Pr > F). In the next table the explained sources of variability (MODEL ) are partitioned to 
period, steer and suppl. The calculated F and P values for suppl are 27.68 and 0.0007, 
respectively. At the end of output are least squares means (LSMEAN) with their standard 
errors (Std Err), and then the Tukey tests between all pairs of suppl are shown. The t values 
for the tests of differences and the P values are given.  
 

14.4 Change-over Design Set as Several Latin Squares 

The main disadvantage of a Latin square is that the number of columns, rows and treatments 
must be equal. If there are many treatments the Latin square becomes impractical. On the 
other hand, small Latin squares have few degrees of freedom for experimental error, and 
because of that are imprecise. In general, precision and the power of test can be increased 
by using more animals in an experiment. Another way of improving an experiment is the 
use of a change-over design with periods as block effects. Such a design allows testing of a 
larger number of animals and accounting for the effect of blocks. In a Latin square design 
greater precision can be achieved if the experiment is designed as a set of several Latin 
squares. This is also a change-over design with the effect of squares defined as blocks. For 
example, assume an experiment designed as two Latin squares with three treatments in three 
periods: 
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 Square I   Square II  
 Columns (animals)  Columns (animals) 

Rows 
(periods) 1 2 3  4 5 6 

1 T1 T3 T2  T1 T2 T3 

2 T3 T2 T1  T2 T3 T1 

3 T2 T1 T3  T3 T1 T2 

 
The model is: 

yij(k)m = µ + SQm + ROW(SQ)im + COL(SQ)jm+ τ(k) + εij(k)m  

 i,j,k = 1,...,r;  m = 1,...,b 

where: 
yij(k)m = observation ij(k)m  
µ = the overall mean  
SQm = the effect of square m 
ROW(SQ)im = the effect of row i within square m  
COL(SQ)jm, = the effect of column j within square m  
τ(k) = the effect of treatment k 
εij(k)m = random error with mean 0 and variance σ2 
r = the number of treatments, and the number of rows and columns within each 
square 
b = the number of squares 

 
The partition of sources of variability and corresponding degrees of freedom are shown in 
the following table: 
 

Source  Degrees of freedom 
Squares (blocks) b – 1 
Rows within squares b(r – 1) 
Columns within squares b(r – 1) 
Treatments r – 1 
Residual b(r – 1)(r – 2) + (b – 1)(r – 1) 
Total b r2 – 1 

 
The F statistic for testing treatments is: 

RES

TRT

MS
MSF =  
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Example: The aim of this experiment was to test the effect of  four different supplements 
(A, B, C and D) on hay intake of fattening steers. The experiment was designed as two Latin 
squares: each with four animals in four periods of 20 days. The steers were housed 
individually. Each period consists of 10 days of adaptations and 10 days of measuring. The 
data in the following table are the means of 10 days: 

SQUARE I 
 Steers 
Periods 1 2 3 4 
1 10.0(B) 9.0(D) 11.1(C) 10.8(A) 
2 10.2(C) 11.3(A) 9.5(D) 11.4(B) 
3 8.5(D) 11.2(B) 12.8(A) 11.0(C) 
4 11.1(A) 11.4(C) 11.7(B) 9.9(D) 

 
SQUARE II 
 Steers 
Periods 1 2 3 4 
1 10.9(C) 11.2(A) 9.4(D) 11.2(B) 
2 10.5(B) 9.6(D) 11.4(C) 10.9(A) 
3 11.1(A) 11.4(C) 11.7(B) 9.8(D) 
4 8.8(D) 12.9(B) 11.4(A) 11.2(C) 

 
The results are shown in the following ANOVA table: 
 

Source  SS df MS F 
Squares 0.195313 1 0.195313  
Periods within squares 2.284375 6 0.380729 2.65 
Steers within squares 5.499375 6 0.916563 6.37 
Treatments 23.380938 3 7.793646 54.19 
Residual 2.157188 15 0.143813  
Total 33.517188 31   

 
The critical value for treatments is F0.05,3,15 = 3.29. The calculated F = 54.19 is greater than 
the critical value, H0 is rejected, and it can be concluded that treatments influence hay intake 
of steers.  
 
 
14.4.1 SAS Example for Several Latin Squares 

The SAS program for the example of intake of hay by steers designed as two Latin squares 
is as follows. 
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SAS program: 
 
DATA a; 
    INPUT square period steer suppl $ hay @@; 
    DATALINES; 
1  1 1 B 10.0      2  1 5 C 11.1 
1  1 2 D  9.0      2  1 6 A 11.4 
1  1 3 C 11.1      2  1 7 D  9.6 
1  1 4 A 10.8      2  1 8 B 11.4 
1  2 1 C 10.2      2  2 5 B 10.7 
1  2 2 A 11.3      2  2 6 D  9.8 
1  2 3 D  9.5      2  2 7 C 11.6 
1  2 4 B 11.4      2  2 8 A 11.3 
1  3 1 D  8.5      2  3 5 A 11.3 
1  3 2 B 11.2      2  3 6 C 11.6 
1  3 3 A 12.8      2  3 7 B 11.9 
1  3 4 C 11.0      2  3 8 D 10.0 
1  4 1 A 11.1      2  4 5 D  9.0 
1  4 2 C 11.4      2  4 6 B 13.1 
1  4 3 B 11.7      2  4 7 A 11.6 
1  4 4 D  9.9      2  4 8 C 11.4 
; 
 PROC GLM; 
      CLASS square period steer suppl; 
      MODEL hay = square period(square) steer(square) suppl; 
      LSMEANS suppl / STDERR P TDIFF ADJUST=TUKEY; 
 RUN; 

 
Explanation: The GLM procedure was used. The CLASS statement defines categorical 
(class) variables. The MODEL statement defines hay as the dependent and square, 
period(square), steer(square) and suppl as independent variables. The LSMEANS 
statement calculates the treatment means. The options after the slash calculate the standard 
errors and test the difference between means by using a Tukey test. 
 
SAS output: 
 
Dependent Variable: hay 
 
                        Sum of 
Source           DF     Squares     Mean Square   F Value   Pr > F 
Model            16   31.52000000    1.97000000    10.01   <.0001 
Error            15    2.95218750    0.19681250 
Corrected Total  31   34.47218750 
 
    R-Square     Coeff Var      Root MSE      hay Mean 
    0.914360      4.082927      0.443636      10.86563 
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Source         DF   Type III SS   Mean Square   F Value    Pr > F 
square         1    1.08781250    1.08781250      5.53    0.0328 
period(square) 6    2.05687500    0.34281250      1.74    0.1793 
steer(square)  6    5.48187500    0.91364583      4.64    0.0074 
suppl          3   22.89343750    7.63114583     38.77    <.0001 
 
                     Least Squares Means 
          Adjustment for Multiple Comparisons: Tukey 
 
                             Standard                  LSMEAN 
suppl      hay LSMEAN           Error    Pr > |t|      Number 
A          11.4500000       0.1568489      <.0001           1 
B          11.4250000       0.1568489      <.0001           2 
C          11.1750000       0.1568489      <.0001           3 
D           9.4125000       0.1568489      <.0001           4 
 
             Least Squares Means for Effect suppl 
           t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                   Dependent Variable: hay 
 
 i/j              1             2             3             4 
    1                    0.112705      1.239756      9.185468 
                           0.9995        0.6125        <.0001 
    2      -0.11271                    1.127051      9.072763 
             0.9995                      0.6792        <.0001 
    3      -1.23976      -1.12705                    7.945711 
             0.6125        0.6792                      <.0001 
    4      -9.18547      -9.07276      -7.94571 
             <.0001        <.0001        <.0001 

 
Explanation: The first table is the ANOVA table for the Dependent Variable hay. The 
Sources of variability are Model, residual (Error) and Corrected Total. In the table are listed 
degrees of freedom (DF), Sum of Squares, Mean Square, calculated F value and P value (Pr 
> F). In the next table the explained sources of variability (MODEL) are partitioned to 
square, period(square), steer(square) and suppl. The calculated F and P values for suppl 
are 38.77 and <0.0001, respectively. At the end of output the least squares means 
(LSMEAN) of supplements with their standard errors (Std Err), and then the Tukey test 
between all pairs of suppl are shown.  

Exercises 

14.1. The objective of  this experiment was to test the effect of ambient temperature on the 
progesterone concentration of sows. The sows were subjected to different temperature 
stress: Treatment 1 = stress for 24 hours, Treatment 2 = stress for 12 hours, Treatment 3 = 
no stress. The experiment was conducted on nine sows in three chambers to determine the 
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effect of stress. Each sow was treated with all three treatments over three periods. The 
design is a set of three Latin squares: 
 

Sow Treatment Period Progesterone Sow Treatment Period Progesterone 
1 TRT1 1 5.3 6 TRT3 1 7.9 
1 TRT2 2 6.3 6 TRT1 2 4.7 
1 TRT3 3 4.2 6 TRT2 3 6.8 
2 TRT2 1 6.6 7 TRT1 1 5.5 
2 TRT3 2 5.6 7 TRT2 2 4.6 
2 TRT1 3 6.3 7 TRT3 3 3.4 
3 TRT3 1 4.3 8 TRT2 1 7.8 
3 TRT1 2 7.0 8 TRT3 2 7.0 
3 TRT2 3 7.9 8 TRT1 3 7.9 
4 TRT1 1 4.2 9 TRT3 1 3.6 
4 TRT2 2 5.6 9 TRT1 2 6.5 
4 TRT3 3 6.6 9 TRT2 3 5.8 
5 TRT2 1 8.1     
5 TRT3 2 7.9     
5 TRT1 3 5.8     

 
Draw a scheme of the experiment. Test the effects of treatments.  
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Chapter 15  
 
Factorial Experiments 

A factorial experiment has two or more sets of treatments that are analyzed at the same time. 
Recall that treatments denote particular levels of an independent categorical variable, often 
called a factor. Therefore, if two or more factors are examined in an experiment, it is a 
factorial experiment. A characteristic of a factorial experiment is that all combinations of 
factor levels are tested. The effect of a factor alone is called a main effect. The effect of 
different factors acting together is called an interaction. The experimental design is 
completely randomized. Combinations of factors are randomly applied to experimental 
units. Consider an experiment to test the effect of protein content and type of feed on milk 
yield of dairy cows. The first factor is the protein content and the second is type of feed. 
Protein content is defined in three levels, and two types of feed are used. Each cow in the 
experiment receives one of the six protein x feed combinations. This experiment is called a 
3 x 2 factorial experiment, because three levels of the first factor and two levels of the 
second factor are defined. An objective could be to determine if cows’ response to different 
protein levels is different with different feeds. This is the analysis of interaction. The main 
characteristic of a factorial experiment is the possibility to analyze interactions between 
factor levels. Further, the factorial experiment is particularly useful when little is known 
about factors and all combinations have to be analyzed in order to conclude which 
combination is the best. There can be two, three, or more factors in an experiment. 
Accordingly, factorial experiments are defined by the number, two, three, etc., of factors in 
the experiment. 
 
 

15.1 The Two Factor Factorial Experiment  

Consider a factorial experiment with two factors A and B. Factor A has a levels, and factor B 
has b levels. Let the number of experimental units for each A x B combination be n. There is 
a total of nab experimental units divided into ab combinations of A and B. The set of 
treatments consists of ab possible combinations of factor levels. 
 
The model for a factorial experiment with two factors A and B is: 

yijk = µ + Ai + Bj +(AB)ij + εijk i = 1,…,a; j = 1,…,b;  k = 1,…,n 

where: 
yijk = observation k in level i of factor A and level j of factor B 
µ = the overall mean 
Ai = the effect of level i of factor A 
Bj = the effect of level j of factor B 
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(AB)ij = the effect of the interaction of level i of factor A with level j of factor B 
εijk = random error with mean 0 and variance σ2 
a = number of levels of factor A; b = number of levels of factor B; n = number of 
observations for each A x B combination. 

 
The simplest factorial experiment is a 2 x 2 , an experiment with two factors each with two 
levels. The principles for this experiment are generally valid for any factorial experiment. 
Possible combinations of levels are shown in the following table: 
 

 Factor B 
Factor A B1 B2 
A1  A1B1 A1B2 
A2  A2B1 A2B2 

 
There are four combinations of factor levels. Using measurements yijk, the schema of the 
experiment is:  
 

A1 A2 
B1 B2 B1 B2 

y111 y121 y211 y221 
y112 y122 y212 y222 
... ... ... ... 

y11n y12n y21n y22n 
 
The symbol yijk denotes measurement k of level i of factor A and level j of factor B. 
 
The total sum of squares is partitioned to the sum of squares for factor A, the sum of squares 
for factor B, the sum of squares for the interaction of A x B and the residual sum of squares 
(unexplained sum of squares): 

SSTOT = SSA + SSB + SSAB + SSRES 

with corresponding degrees of freedom: 

(abn-1) = (a-1) + (b-1) + (a-1)(b-1) + ab(n-1) 

The sums of squares are: 

∑∑ ∑ −=
i j k ijkTOT yySS 2...)(  

∑∑∑ ∑ −=−=
i ii j k iA yybnyySS 22 ...)..(...)..(  

∑∑∑ ∑ −=−=
i ji j k jB yyanyySS 22 ...)..(...)..(  

BAi j ijAB SSSSyynSS −−−= ∑∑ 2...).(   

∑∑ ∑ −=
i j k ijijkRES yySS 2.)(  

The sums of squares can be calculated using short cut computations:  
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1) Total sum: 

Σi Σj Σk yijk 

2) Correction for the mean: 

( )
abn

y
C i j k ijk

2∑∑ ∑
=  

3) Total sum of squares: 

SSTOT = Σi Σj Σk (yijk)2 - C 

4) Sum of squares for factor A: 

( )
C

nb

y
SS

i

j k ijk

A −= ∑ ∑ ∑ 2

 

5) Sum of squares for factor B: 

( )
C

na

y
SS

j
i k ijk

B −= ∑ ∑ ∑ 2

 

6) Sum of squares for interaction: 

( )
CSSSS

n

y
SS BAi j

k ijk
AB −−−= ∑∑ ∑ 2

 

7) Residual sum of squares: 

SSRES = SSTOT - SSA - SSB - SSAB  
 
Dividing the sums of squares by their corresponding degrees of freedom yields the mean 
squares: 

Mean square for factor A: 
1−

=
a
SSMS A

A  

Mean square for factor B: 
1−

=
b
SSMS B

B  

Mean square for the A x B interaction: 
)1( )1(

  
  −−

=
ba

SSMS BxA
BxA  

Mean square for residual (experimental error): 
)1( −

=
nab

SSMS RES
RES  

 
The sums of squares, mean squares and degrees of freedom are shown in an ANOVA table: 
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Source  SS df MS F  

A SSA a-1 MSA MSA/MSRES (2) 
B SSB b-1 MSB MSB/MSRES (3) 
A x B SSA x B (a-1)(b-1) MSA x B MSA x B/ MSRES (1) 
Residual SSRES ab(n-1) MSRES   
Total SSTOT abn-1    

 
In the table, the tests for A, B and A x B effects are depicted with numbers (2), (3) and (1), 
respectively: 
 
(1) The F test for the interaction follows the hypotheses: 

H0: µij = µi’j’ for all i, j, i’, j’ 
H1: µij ≠ µi’j’ for at least one pair (ij, i'j') 

 
The test statistic: 
 

RES

BxA

MS
MSF   =  

 
has an F distribution with (a-1)(b-1) and ab(n-1) degrees of freedom if H0 holds. 
 
(2) The F test for factor A (if there is no interaction) follows the hypotheses: 

H0: µi = µi’ for each pair i, i' 
H1: µi ≠ µi’ for at least one pair i,i' 

 
The test statistic: 
 

RES

A

MS
MSF =  

 
has an F distribution with (a-1) and ab(n-1) degrees of freedom if H0 holds. 
 
(3) The F test for factor B (if there is no interaction) follows the hypotheses: 

H0: µj = µj’ for each pair j, j' 
H1: µj ≠ µj’ for at least one pair j,j' 

 
The test statistic: 
 

RES

B

MS
MSF =  

 
has an F distribution with (b-1) and ab(n-1) degrees of freedom if H0 holds. 
 
The hypothesis test for interaction must be carried out first, and only if the effect of 
interaction is not significant the main effects are tested. If the interaction is significant, tests 
for the main effects are meaningless. 
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Interactions can be shown graphically (Figure 15.1). The vertical axis represents 
measures and the horizontal axis represents levels of factor A. The connected symbols 
represent the levels of factor B. If the lines are roughly parallel, this means that there is no 
interaction. Any difference in slope between the lines indicates a possible interaction, the 
greater the difference in slope the stronger the interaction.  
 

  
Figure 15.1  Illustration of interaction between two factors A and B 

 
If an interaction exists there are two possible approaches to the problem: 
 
1. Use a two-way model with interaction. The total sum of squares is partitioned to the sum 
of squares for factor A, the sum of squares for factor B, the sum of squares for interaction 
and the residual sum of squares:  

SSTOT = SSA + SSB + SSAB + SSRES  

2. Use a one-way model, the combination of levels of A x B are treatments. With this 
procedure, the treatment sum of squares is equal to the summation of the sum of squares for 
factor A, the sum of squares for factor B, and the sum of squares for interaction: 

SSTRT = SSA + SSB + SSAB 

The total sum of squares is:  

SSTOT = SSTRT + SSRES  

If interaction does not exist, an additive model is more appropriate. The additive model 
contains only main effects and interaction is not included: 

yijk = µ + Ai + Bj + εijk  

In the additive model the total sum of squares is partitioned to: 

SSTOT = SSA + SSB + SSRES' 

Factor A 

y 

Difference 
between B1 
and B2 in A1  

Level B1  

Level B2  

Difference 
between B1 
and B2 in A2  

A1 A2 



318  Biostatistics for Animal Science 

 

The residual sum of squares (SSRES) is equal to the sum of squares for interaction plus the 
residual sum of squares for the model with interaction: 

SSRES' = SSAB + SSRES  

In factorial experiments with three or more factors, there are additional combinations of 
interactions. For example, in an experiment with three factors A, B and C, it is possible to 
define the following interactions: A x B, A x C, B x C and A x B x C. A problem connected 
with three-way and more complex interactions is that it is often difficult to explain their 
practical meaning. 
 
 
Example: An experiment was conducted to determine the effect of adding two vitamins (I 
and II) in feed on average daily gain of pigs. Two levels of vitamin I (0 and 4 mg) and two 
levels of vitamin II (0 and 5 mg) were used. The total sample size was 20 pigs, on which the 
four combinations of vitamin I and vitamin II were randomly assigned. The following daily 
gains were measured:  
 

Vitamin I 0 mg 4mg 
Vitamin II 0 mg 5 mg 0 mg 5 mg 

 0.585 0.567 0.473 0.684 
 0.536 0.545 0.450 0.702 
 0.458 0.589 0.869 0.900 
 0.486 0.536 0.473 0.698 
 0.536 0.549 0.464 0.693 

Sum 2.601 2.786 2.729 3.677 
Average 0.520 0.557 0.549 0.735 

 
 
The sums of squares are calculated: 
1) Total sum: 

Σi Σj Σk yijk = (0.585 + ....... + 0.693) = 11.793 

2) Correction for the mean: 

( )
953742.6

20
)793.11( 2

2

===
∑ ∑ ∑

abn

y
C i j k ijk

 

3) Total sum of squares: 

SSTOT = Σi Σj Σk (yijk)2 - C = 0.5852 + 0.5362 + ...+ 0.6932 = 7.275437 - 6.953742 
= 0.32169455 

4) Sum of squares for vitamin I: 

( )
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5) Sum of squares for vitamin II: 

( )
06418445.0953742.6
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10
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6) Sum of squares for interaction: 
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7) Residual sum of squares: 

SSRES = SSTOT – SSVit I – SSVit II - SSVit I x Vit II =  
0.32169455 – 0.05191805 – 0.06418445 – 0.02910845 = 0.17648360 

 
The ANOVA table is: 
 

Source  SS df MS F 
Vitamin I 0.05191805 1 0.05191805 4.71 
Vitamin II 0.06418445 1 0.06418445 5.82 
Vit I x Vit II 0.02910845 1 0.02910845 2.64 
Residual 0.17648360 16 0.01103023  
Total 0.32169455 19   

 
The critical value for α = 0.05 is F0.05,1,16 = 4.49. The computed F value for the interaction is 
2.64. In this case the calculated F value is less than the critical value. The means of the 
factor level combinations are shown in Figure 15.2. If lines are roughly parallel, this 
indicates that interaction is not present. According to the figure interaction possibly exists, 
but probably the power is not enough to detect it. Most likely more than 5 measurements per 
group are needed.  
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Figure 15.2  Interaction of vitamins I and II 
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15.2 SAS Example for Factorial Experiment 

The SAS program for the example of vitamin supplementation is as follows. Recall the data: 
 

Vitamin I 0 mg 4 mg 
Vitamin II 0 mg 5 mg 0 mg 5 mg 

 0.585 0.567 0.473 0.684 
 0.536 0.545 0.450 0.702 
 0.458 0.589 0.869 0.900 
 0.486 0.536 0.473 0.698 
 0.536 0.549 0.464 0.693 

 
SAS program: 
 
DATA gain; 
INPUT vitI vitII gain @@; 
DATALINES; 
1 1 0.585     2 1 0.473 
1 1 0.536     2 1 0.450 
1 1 0.458     2 1 0.869 
1 1 0.486     2 1 0.473 
1 1 0.536     2 1 0.464 
1 2 0.567     2 2 0.684 
1 2 0.545     2 2 0.702 
1 2 0.589     2 2 0.900 
1 2 0.536     2 2 0.698 
1 2 0.549     2 2 0.693 
; 
PROC GLM; 
CLASS vitI vitII; 
MODEL gain= vitI vitII vitI*vitII; 
LSMEANS vitI*vitII / TDIFF PDIFF P STDERR ADJUST=TUKEY; 
RUN; 

 
Explanation: The GLM procedure is used. The CLASS statement defines classification 
(categorical) independent variables. The statement, MODEL Gain = vitI vitII vitI*vitII 
defines the dependent variable gain, and independent variables vitI, vitII and their 
interaction vitI*vitII. The LSMEANS statement calculates means. The options after the 
slash specify calculation of standard errors and tests of differences between least-squares 
means using a Tukey test.  
 
SAS output: 
 

Dependent Variable: GAIN 
                          Sum of          Mean 
Source           DF      Squares        Square  F Value    Pr > F 
Model             3   0.14521095    0.04840365     4.39    0.0196 
Error            16   0.17648360    0.01103023 
Corrected Total  19   0.32169455 
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      R-Square           C.V.      Root MSE       GAIN Mean 
      0.451394       17.81139       0.10502            0.58965 
 
Source       DF    Type III SS   Mean Square  F Value    Pr > F 
VITI          1     0.05191805    0.05191805     4.71    0.0454 
VITII         1     0.06418445    0.06418445     5.82    0.0282 
VITI*VITII    1     0.02910845    0.02910845     2.64    0.1238 
 
                      General Linear Models Procedure 
                            Least Squares Means 
                Adjustment for multiple comparisons: Tukey 
 
    VITI   VITII       GAIN       Std Err     Pr > |T|   LSMEAN 
                      LSMEAN        LSMEAN   H0:LSMEAN=0   Number 
     1      1      0.52020000    0.04696855        0.0001     1 
     1      2      0.55720000    0.04696855        0.0001     2 
     2      1      0.54580000    0.04696855        0.0001     3 
     2      2      0.73540000    0.04696855        0.0001     4 
 
          T for H0: LSMEAN(i)=LSMEAN(j) / Pr > |T| 
 
           i/j       1         2         3         4 
           1     .      -0.55703  -0.38541  -3.23981 
                          0.9433    0.9799    0.0238 
           2  0.557031     .      0.171626  -2.68278 
                0.9433              0.9981    0.0701 
           3  0.385405  -0.17163     .      -2.85441 
                0.9799    0.9981              0.0506 
           4  3.239814  2.682783  2.854409     . 
                0.0238    0.0701    0.0506 
 

Explanation: The first table in the GLM output is an ANOVA table for the Dependent 
Variable gain. The Sources of variability are Model, Error and Corrected Total. In the table 
are listed degrees of freedom (DF), Sum of Squares, Mean Square, calculated F (F value) 
and P value (Pr > F). In the next table the explained sources of variability are partitioned to 
VITI, VITII and VITI*VITII. For, example, for the interaction effect VITI*VITII the 
calculated F and P values are 2.64 and 0.1238, respectively. At the end of output least 
squares means (LSMEAN) with their standard errors (Std Err) are given, and then the Tukey 
test between all pairs of interactions. The t values and corresponding P values adjusted for 
multiple comparisons are shown. For example, in row 1 and column 4 the numbers -
3.23981 and 0.0238 denote the t value and P value testing the differences between 
combinations of 0 mg vitamin I and 0 mg vitamin II, and 4 mg vitamin I and 5 mg vitamin 
II. 
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Exercise 

15.1. The objective of this experiment was to determine possible interactions of three types 
of protein source with increasing energy on milk yield in dairy cows. Three types of protein 
were used: rape seed + soybean, sunflower + soybean and sunflower + rape seed meal, and 
two energy levels: standard and increased level. The base diet was the same for all cows. 
The following average daily milk yields were measured: 
 

Protein 
Source 

Rape seed +  
soybean 

Sunflower +  
soybean 

Rape seed +  
sunflower 

Energy level High Standard High Standard High Standard 
 32 25 30 29 28 25 
 29 26 29 28 27 30 
 38 25 26 34 32 26 
 36 31 34 36 33 27 
 30 28 34 32 33 28 
 25 23 30 30 37 24 
 29 26 32 27 36 22 
 32 26 33 29 26 28 

Test the effect of interaction between protein source and energy level. 
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Chapter 16  
 
Hierarchical or Nested Design 

In some experiments samples have to be chosen in two, three or even more steps. For 
example, if the objective is to test if corn silage quality varies more between regions than 
within regions, a random sample of regions must be chosen, and then within each region a 
sample of farms must be chosen. Therefore, the first step is to choose regions, and the 
second step is to choose farms within the regions. This is an example of a hierarchical or 
nested design. Samples can be chosen in more steps giving, two-, three- or multiple-step 
hierarchical designs.  
 

16.1 Hierarchical Design with Two Factors 

Consider an experiment with two factors. Let factor A have three levels, and factor B three 
levels within each level of factor A. The levels of B are nested within levels of A, that is, the 
levels of B are independent between different levels of A. Within each level of B three 
random samples are chosen. The schema of this design is: 
 
A 1 2 3 

                                           
 6 744 844

                              
 6 744 844

                                 
 6 744 844

 
B 1 2 3 4 5 6 7 8  9 
 y111 y121 y131 y141 y151 y161 y171 y181 y191  
 y112 y122 y132 y142 y152 y162 y172 y182 y192  
            
 y11n y12n y13n y14n y15n y16n y17n y18n y19n  
 
 
The model for this design is: 

yijk = µ + Ai + B(A)ij +  εijk i = 1,...,a;  j = 1,...,b;  k = 1,...,n 

where: 
yijk = observation k in level i of factor A and level j of factor B 
µ = the overall mean  
Ai = the effect of level i of factor A 
B(A)ij = the effect of level j of factor B within level i of factor A 
εijk = random error with mean 0 and variance σ2 
a = the number of levels of A; b = the number of levels of B; n = the number of 
observations per level of B 
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For example, assume that the levels of factor A are boars of the Landrace breed, and the 
levels of factor B are sows mated to those boars. The sows are a random sample within the 
boars. Daily gain was measured on offspring of those boars and sows. The offspring 
represent random samples within the sows. If any relationship among the sows is ignored, 
then the sows bred by different boars are independent. Also, the offspring of different sows 
and boars are independent of each other.  

Similarly to the other designs, the total sum of squares can be partitioned into the sums 
of squares of each source of variability. They are the sum of squares for factor A, the sum of 
squares for factor B within factor A, and the sum of squares within B (the residual sum of 
squares): 

SSTOT = SSA + SSB(A) + SSWITHIN  B 

Their corresponding degrees of freedom are: 

(abn-1) = (a-1) + a(b-1) + ab(n-1) 

The sums of squares are: 

∑∑ ∑ −=
i j k ijkTOT yySS 2...)(  

∑∑∑ ∑ −=−=
i ii j k iA yybnyySS 22 ...)..(...)..(  

∑∑∑∑ ∑ −=−=
i j iiji j k iijAB yynyySS 22

)( ..).(..).(  

∑ ∑ ∑ −=
i j k ijijkBWITHIN yySS 2

 .)(  

Sums of squares can be calculated by short-cut computations: 
 
1) Total sum:  

Σi Σj Σk yijk 

2) Correction for the mean: 

( )
abn

y
C i j k ijk

2∑∑ ∑
=  

3) Total sum of squares: 

SSTOT = Σi Σj Σk (yijk)2 – C 

4) Sum of squares for factor A: 

( )
C

nb

y
SS

i

j k ijk

A −= ∑
∑ ∑ 2

 

5) Sum of squares for factor B within factor A: 

( )
CSS

n

y
SS Ai j

k ijk
AB −−= ∑∑ ∑ 2

)(  
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6) Sum of squares within factor B (the residual sum of squares): 

SSWITHIN  B = SSTOT - SSA - SSB(A)   
 
Mean squares (MS) are obtained by dividing the sums of squares (SS) by their 
corresponding degrees of freedom (df). The ANOVA table is: 
 

Source  SS df MS = SS / df 
A SSA a-1 MSA 

B within A  SSB(A) a(b-1) MSB(A) 
Within B SSWITHIN  B  ab(n-1) MSWITHIN  B  
Total SSTOT abn-1  

 
The effect 'Within B' is an unexplained effect or residual. Expectations of mean squares, 
E(MS), are defined according whether the effects of A and B are fixed or random: 
 

E(MS)  A and B fixed A fixed and B random A and B random  

E(MSA) σ2 + Q(A) σ2 + n σ2
B + Q(A) σ2 + n σ2

B + nb 
σ2

A 

E(MSB(A))  σ2 + Q(B(A)) σ2 + n σ2
B  σ2 + n σ2

B  
E(MSWITHIN  B) σ2  σ2  σ2  

 
where σ2, σ2

B and σ2
A are variance components for error, factor B and factor A, and Q(A) and 

Q(B(A)) are fixed values of squares of factors A and B, respectively. 
 
The experimental error for particular effects depends whether the effects are fixed or 
random. Most often B is random. In that case the experimental error to test the effect of A is 
the MSB(A), and the experimental error for the effect of B is the MSWITHIN  B. The F statistic for 
the effect of A is:  

)( AB

A

MS
MSF =  

The F statistic for the effect of B is: 

B WITHIN

AB

MS
MS

F )(=  

 
 
Example: The aim of this experiment was to determine effects of boars and sows on 
variability of birth weight of their offspring. A nested design was used: four boars were 
randomly chosen with three sows per boar and two piglets per sow. The data, together with 
sums and sum of squares, are shown in the following table: 
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Boars Sows Piglets Weight Total sum Sums per 
boar 

Sums per 
sow 

1 1 1 1.2    
1 1 2 1.2   2.4 
1 2 3 1.2    
1 2 4 1.3   2.5 
1 3 5 1.1    
1 3 6 1.2  7.2 2.3 
2 4 7 1.2    
2 4 8 1.2   2.4 
2 5 9 1.1    
2 5 10 1.2   2.3 
2 6 11 1.2    
2 6 12 1.1  7.0 2.3 
3 7 13 1.2    
3 7 14 1.2   2.4 
3 8 15 1.3    
3 8 16 1.3   2.6 
3 9 17 1.2    
3 9 18 1.2  7.4 2.4 
4 10 19 1.3    
4 10 20 1.3   2.6 
4 11 21 1.4    
4 11 22 1.4   2.8 
4 12 23 1.3    
4 12 24 1.3 29.6 8.0 2.6 

Sum   29.6 29.6 29.6 29.6 
Number   24    
Sum of 
squares 
(uncorrected) 

  36.66  219.6 73.28 

 
a = the number of boars = 4; b = the number of sows per boar = 3; n = the number of piglets 
per sow = 2 
 
Short computations of sums of squares: 
 
1) Total sum:  

Σi Σj Σk yijk = (1.2 + 1.2 + 1.2 + ....... + 1.3 + 1.3) = 29.6 

2) Correction for the mean: 

( )
50667.36
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)6.29( 2
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y
C i j k ijk

 

abn = 24 = the total number of observations 
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3) Total sum of squares: 

SSTOT = Σi Σj Σk (yijk)2 – C = (1.2)2 + (1.2)2 + (1.2)2 + ....... + (1.3)2 + (1.3)2 – C  

          = 0.15333 

4) Sum of squares for boars: 
( ) [ ] 0.09333  36.50667 (8.0)  (7.4)  (7.0)  (7.2)

6
1 2222

2

=−+++−= ∑
∑ ∑
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y
SS

i
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BOAR  

nb = 6 = the number of observations per boar 
 
5) Sum of squares for sows within boars: 

( )
=−−= ∑ ∑ ∑ CSS

n

y
SS BOARi j

k ijk
BOARSOW

2

)(  

[ ] 04005066736093330(2.6)  (2.8)  ....  (2.5)  (2.4)
2
1 2222 ... =−−++++=  

n = 2 = the number of observations per sow 
 
6) Sum of squares within sows (the residual sum of squares): 

SSPIGLET(SOW) = SSTOT – SSBOAR – SSSOW(BOAR)  = 0.15333 – 0 09333 – 0.040 = 0.020 
 
The ANOVA table: 
 

Source  SS df MS F 
Boars 0.093 3 0.031 6.22 
Sows within boars 0.040 8 0.005 3.00 
Piglets within sows 0.020 12 0.002  
Total 0.153 23   

 
It was assumed that the effects of boars and sows are random. The experimental error for 
boars is the mean square for sows within boars, and the experimental error for sows is the 
mean square for piglets within sows. The critical value for boars is F0.05,3,8 = 4.07, and the 
critical value for sows within boars is F0.05,8,12 = 2.85. The calculated F values are greater 
than the critical values and thus the effects of sows and boars are significant. The estimates 
of variance components are shown in the following table: 
 
 

Source  E(MS) Variance 
components 

Percentage of 
the total 

variability 
Boars σ2 + 2 σ2

SOWS + 6 σ2
BOARS 0.004352 56.63 

Sows within boars σ2 + 2 σ2
SOWS  0.001667 21.69 

Piglets within sows  σ2  0.001667 21.69 
Total  0.007685 100.00 

 



328  Biostatistics for Animal Science 

 

16.2 SAS Example for Hierarchical Design 

SAS program for the example with variability of piglets’ birth weight is as follows. The use 
of the NESTED and MIXED procedures are shown. 
 
SAS program: 
 
DATA pig; 
INPUT boar sow piglet birth_wt @@; 
DATALINES; 
1  1  1  1.2    1  1  2  1.2    1  2  1  1.2 
1  2  2  1.3    1  3  1  1.1    1  3  2  1.2 
2  1  1  1.2    2  1  2  1.2    2  2  1  1.1 
2  2  2  1.2    2  3  1  1.2    2  3  2  1.1 
3  1  1  1.2    3  1  2  1.2    3  2  1  1.3 
3  2  2  1.3    3  3  1  1.2    3  3  2  1.2 
4  1  1  1.3    4  1  2  1.3    4  2  1  1.4 
4  2  2  1.4    4  3  1  1.3    4  3  2  1.3 
; 
PROC NESTED DATA=pig; 
      CLASS boar sow; 
      VAR birth_wt; 
   RUN; 
 
   PROC MIXED DATA=pig; 
   CLASS boar sow; 
   MODEL birth_wt = ; 
   RANDOM boar sow(boar)/S; 
   RUN; 
 

Explanation: The NESTED and MIXED procedures are shown. The NESTED uses 
ANOVA estimation, and the MIXED by default uses Restricted Maximum Likelihood 
(REML) estimation. The NESTED procedure is appropriate only if there are not additional 
fixed effects in the model. The CLASS statement defines categorical variables, and the 
VAR statement defines the dependent variable birth_wt. The MIXED procedure is a more 
general procedure, appropriate even when additional fixed effects are in the model. The 
CLASS statement defines categorical variables, and the statement, MODEL birth_wt = ; 
denotes that the dependent variable is birth_wt and the only fixed effect in the model is the 
overall mean. The RANDOM statement defines the random effects boar and sow(boar). 
The expression sow(boar) denotes that sow is nested within boar. The S options directs 
computation of predictions and their standard errors. Since there are no fixed effects in the 
model, the LSMEANS statement is not needed. 
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SAS output of the NESTED procedure: 
 
                     Coefficients of Expected Mean Squares 
 

                     Source      boar      sow      Error 
                     boar         6          2          1 
                     sow          0          2          1 
                     Error        0          0          1 
Nested Random Effects Analysis of Variance for Variable birth_wt 
 
Variance              Sum of                         Error 
 Source      DF       Squares    F Value    Pr > F    Term 
 Total       23      0.153333 
 boar         3      0.093333       6.22    0.0174    sow 
 sow          8      0.040000       3.00    0.0424    Error 
 Error       12      0.020000 
 
                    Nested Random Effects Analysis of 
                      Variance for Variable birth_wt 
 
     Variance                        Variance     Percent 
     Source       Mean Square       Component    of Total 
     Total           0.006667        0.007685    100.0000 
     boar            0.031111        0.004352     56.6265 
     sow             0.005000        0.001667     21.6867 
     Error           0.001667        0.001667     21.6867 
 
          birth_wt Mean                          1.23333333 
          Standard Error of birth_wt Mean        0.03600411 
 

Explanation: The first table presents the coefficients for estimating mean squares by the 
ANOVA method. Next is the ANOVA table for the Dependent Variable birth_wt. The 
Sources of variability are Total, boar, sow and Error. In the table are listed degrees of 
freedom (DF), Sum of Squares, F value and P value (Pr > F). Also, the correct Error term 
was given, to test the effect of boar the appropriate error is sow. In the next table Mean 
Squares, Variance components and each source’s percentage of the total variability (Percent 
of Total) are given. The variance components for boar, sow and residual (piglets) are 
0.004352, 0.001667 and 0.001667, respectively.  
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SAS output of the MIXED procedure 
 
                 Covariance Parameter 
                      Estimates 
 
               Cov Parm        Estimate 
               boar            0.004352 
               sow(boar)       0.001667 
               Residual        0.001667 
 
             Solution for Random Effects 
 
                                  Std Err 
Effect      boar  sow  Estimate     Pred    DF  t Value   Pr > |t| 
boar        1          -0.02798   0.04016   12   -0.70     0.4993 
boar        2          -0.05595   0.04016   12   -1.39     0.1888 
boar        3          3.26E-15   0.04016   12     0.00    1.0000 
boar        4           0.08393   0.04016   12     2.09    0.0586 
sow(boar)   1     1    -0.00357   0.02969   12    -0.12    0.9062 
sow(boar)   1     2     0.02976   0.02969   12     1.00    0.3359 
sow(boar)   1     3    -0.03690   0.02969   12    -1.24    0.2376 
sow(boar)   2     1     0.01508   0.02969   12     0.51    0.6207 
sow(boar)   2     2    -0.01825   0.02969   12    -0.61    0.5501 
sow(boar)   2     3    -0.01825   0.02969   12    -0.61    0.5501 
sow(boar)   3     1    -0.02222   0.02969   12    -0.75    0.4685 
sow(boar)   3     2     0.04444   0.02969   12     1.50    0.1602 
sow(boar)   3     3    -0.02222   0.02969   12    -0.75    0.4685 
sow(boar)   4     1    -0.01151   0.02969   12    -0.39    0.7051 
sow(boar)   4     2     0.05516   0.02969   12     1.86    0.0879 
sow(boar)   4     3    -0.01151   0.02969   12    -0.39    0.7051 

 
Explanation: The MIXED procedure gives the estimated variance components (Cov Parm 
Estimate,). Under the title, Solution for Random Effects, the predictions  for each boar and 
sow (Estimate) with their standard errors (Std Err Pred), t and P value (t Value, Pr > |t|) are 
shown. 
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Chapter 17  
 
More about Blocking 

If the results of an experiment are to be applied to livestock production, then experimental 
housing should be similar to housing on commercial farms. For example if animals in production 
are held in pens or paddocks, then the same should be applied in the experiment. It can often be 
difficult to treat animals individually.  Choice of an experimental design can depend on grouping 
of animals and the way treatments are applied. The effect of blocking on the efficiency of a design 
was shown in Chapter 13. Sometimes, the precision of experiments can be enhanced by defining 
double blocks. For example, if animals to be used in an experiment are from two breeds and have 
different initial weights, breed can be defined as one block, and groups of initial weights as 
another. The use of multiple blocking variables can improve the precision of an experiment by 
removing blocks’ contribution to variance.   
 

17.1 Blocking With Pens, Corrals and Paddocks  

In planning an experimental design it is necessary to define the experimental unit. If 
multiple animals are held in cages or pens it may be impossible to treat them individually. If 
the whole cage or pen is treated together then the cage or pen is an experimental unit. 
Similarly, in experiments with a single treatment applied to all animals in each paddock, all 
animals in a paddock are one experimental unit. Multiple paddocks per treatment represent 
replications. This is true even when animals can be measured individually. In that case, 
multiple samples are taken on each experimental unit. Animals represent sample units. It is 
necessary to define the experimental error and the sample error. The definition and 
statistical analysis of the experimental design depends on how the experimental unit is 
defined. For example, assume a design with the number of blocks b = 2, the number of 
treatments a = 2, and the number of animals per each treatment x block combination n = 2. 
Denote blocks by I and II, and treatments by T1 and T2. If it is possible to treat animals 
individually, then a possible design is: 
 

Block I Block II 
T2  
T1  

T1  
T2 

T1  
T2 

T1  
T2 

 
There are four animals per block, and treatments are randomly assigned to them. This is a 
randomized complete block design with two units per treatment x block combination. The 
table with sources of variability is: 
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Source  Degrees of freedom 
Block (b – 1) =   1 
Treatment (a – 1) = 1 
Block x treatment (b – 1)(a – 1) = 1 
Error = Residual ab(n – 1) =  4 
Total (abn – 1) =  7 

 
By using this design it is possible to estimate the block x treatment interaction. The 
experimental error is equal to the residual after accounting for the effects of block, treatment 
and their interaction. 

More often it is the case that animals cannot be treated individually. For example, 
assume again two blocks and two treatments, but two animals are held in each of four cages. 
The same treatment is applied to both animals in each cage. A possible design can be as 
follows: 
 

Block I Block II 

T1  
T1  

T2  
T2 

T2  
T2 

T1  
T1 

 
Two animals are in each cage, two cages per block and the treatments are randomly 
assigned to the cages within each block. The table with sources of variability is: 
 

Source  Degrees of freedom 
Block (b – 1) =   1 
Treatment (a – 1) = 1 
Error = Block x treatment (b – 1)(a – 1) = 1 
Residual ab(n – 1) =  4 
Total (abn – 1) =  7 

 
The error for testing the effect of treatments is the block x treatment interaction because the 
experimental unit is a cage, which is a combination of treatment x block. The effect of the 
treatment x block interaction is tested by using the residual. 
 
The statistical model of this design is: 

yijk = µ + τi + βj + δij + εijk i = 1,...,a; j = 1,...,b; k = 1,...,n 

where: 
yijk = observation k of treatment i in block j  
µ = the overall mean 
τi = the effect of treatment i  
βj = the effect of block j  
δij = random error between experimental units with  mean 0 and variance σ2

δ 
(interaction of treatment x block) 
εijk = random error within experimental units with mean 0 and variance σ2 
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a = the number of treatments, b = the number of blocks, n = the number of 
observations within experimental unit 

 
The hypotheses of treatment effects are of primary interest: 

H0: τ1 = τ2 =... = τa, no treatment effects  
H1: τi  ≠ τi’, for at least one pair (i,i’) a difference exists 

To test hypotheses an F statistic can be used which, if H0 holds, has an F distribution with 
(a – 1) and (a – 1)(b – 1) degrees of freedom: 

ErrorExp

TRT

MS
MSF

.

=  

where MSTRT is the treatment mean square, and MSEXP_Error is the mean square for error δ. 
 
The ANOVA table is: 
 
Source  SS df MS F 

Blocks   SSBLK b – 1 MSBLK MSBLK / MSExp.Error 
Treatments  SSTRT a – 1 MSTRT MSTRT / MSExp.Error 
Block x Treatment 
   = Exp. error SSExp.Error (a – 1)(b – 1) MSExp.Error MSExp.Error / MSRES 

Residual SSRES ab(n – 1) MSRES   
Total SSTOT abn – 1   
 
The expected mean squares are: 

E(MSExp.Error) = σ2 + n σ2
δ  

E(MSRES) = σ2  

When calculating standard errors of the estimated treatment means and the difference 
between treatment means, the appropriate mean square must also be used. The standard 
error of the estimated treatment mean is: 

bn
MS

s ErrorExp
yi

 
.. =  

Generally, using variance components, the standard error of the estimated mean of treatment 
i is: 

bn
ns

iy

22

..
δσσ +

=  

The standard error of the estimated difference between means of two treatments i and i’ is: 







 +=− bnbn

MSs ErrorExpyy ii

11
 .... '
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Example: The effect of four treatments on daily gain of steers was investigated. The steers 
were grouped into three blocks according to their initial weight. A total of 24 steers was 
held in 12 pens, two steers per pen. The pen is an experimental unit. The following average 
daily gains were measured: 
 

Block I Block II Block III 
Treatment 1  

826 
806 

Treatment 2 
871 
881 

Treatment 3   
736 
740 

Treatment 3  
795 
810 

Treatment 1 
827 
800 

Treatment 4 
820 
835 

Treatment 4 
850 
845  

Treatment 4 
860 
840 

Treatment 2  
801 
821 

Treatment 2  
864 
834 

Treatment 3 
729 
709 

Treatment 1 
753 
773 

 
The results are shown in the ANOVA table, and conclusions are made as usual comparing 
the calculated F values with the critical values. 
 

Source  SS df MS F 
Block   8025.5833 2 4012.7917 2.98 
Treatment 33816.8333 3 11272.2778 8.36 
Pen (Exp. Error) 8087.4167 6 1347.9028 7.67 
Residual  2110.0000 12 175.8333   
Total  52039.8333 23   

 
For the 0.05 level of significance, the critical value F0.05,3,6 is 4.76. The calculated F for 
treatments is 8.36; thus, treatments affect daily gain of steers. 
 
The standard error of an estimated treatment mean is:  

9883.14
)2)(3(

9028.1347
==

iys  

The standard error of the estimated difference between means of two treatments is: 

1967.21
)2)(3(

1
)2)(3(

19028.1347
'

=







+=− ii yys  

 
17.1.1 SAS Example for Designs with Pens and Paddocks 

The SAS program for the example of daily gain of steers is as follows:  
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SAS program: 
 
DATA steer; 
       INPUT pen block trt $ d_gain @@; 
       DATALINES; 
   1  1 T1 826       1  1 T1 806     
   2  1 T2 864       2  1 T2 834     
   3  1 T3 795       3  1 T3 810     
   4  1 T4 850       4  1 T4 845     
   5  2 T1 827       5  2 T1 800     
   6  2 T2 871       6  2 T2 881     
   7  2 T3 729       7  2 T3 709     
   8  2 T4 860       8  2 T4 840     
   9  3 T1 753       9  3 T1 773     
  10  3 T2 801      10  3 T2 821     
  11  3 T3 736      11  3 T3 740     
  12  3 T4 820      12  3 T4 835     
  ; 
PROC MIXED  DATA=steer; 
     CLASS block trt; 
     MODEL d_gain = block trt ; 
     RANDOM block*trt /; 
     LSMEANS trt / PDIFF TDIFF ADJUST=TUKEY; 
RUN; 

 
Explanation: The MIXED procedure by default uses Restricted Maximum Likelihood 
(REML) estimation. The CLASS statement defines categorical (classification) variables. 
The MODEL statement defines the dependent variable and the independent variables fitted 
in the model. The RANDOM statement defines random effects (block*trt), which will thus 
be defined as the experimental error for testing treatments. The LSMEANS statement 
calculates treatment least squares means. The options after the slash specify calculation of 
standard errors and tests of differences between least squares means using a Tukey test.  
 
SAS output of the MIXED procedure: 
 
         Covariance Parameter Estimates (REML) 
 
         Cov Parm           Estimate 
         block*trt      586.03472222 
         Residual       175.83333333 
 
             Type 3 Tests of Fixed Effects 
 
                   Num     Den 
     Effect         DF      DF    F Value    Pr > F 
 
     block           2       6       2.98    0.1264 
     trt             3       6       8.36    0.0145 
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                   Least Squares Means 
 
 Effect   trt  Estimate   Std Error   DF   t     Pr > |t| 
 trt  T1       797.5000   14.9883     6   53.21    0.0001 
 trt  T2       845.3333   14.9883     6   56.40    0.0001 
 trt  T3       753.1667   14.9883     6   50.25    0.0001 
 trt  T4       841.6667   14.9883     6   56.15    0.0001 
 
               Differences of Least Squares Means 
 
Effect trt _trt  Diff  Std Error  DF  t    Pr>|t|   Adjust.  Adj P 
trt    T1   T2  -47.83  21.1967   6  -2.26  0.0648  Tukey   0.2106 
trt    T1   T3   44.33  21.1967   6   2.09  0.0814  Tukey   0.2561 
trt    T1   T4  -44.17  21.1967   6  -2.08  0.0823  Tukey   0.2585 
trt    T2   T3   92.17  21.1967   6   4.35  0.0048  Tukey   0.0188 
trt    T2   T4    3.67  21.1967   6   0.17  0.8684  Tukey   0.9980 
trt    T3   T4  -88.50  21.1967   6  -4.18  0.0058  Tukey   0.0226 

 
Explanation: The MIXED procedure estimates variance components for random effects 
(Covariance Parameter Estimates) and provides F tests for fixed effects (Type 3 Test of 
Fixed Effects). These values will be the same as from the GLM procedure if the data are 
balanced. If the numbers of observations are not equal, the MIXED procedure must be used. 
In the Least Squares Means table, the means (Estimate) with their Standard Error are 
presented. In the Differences of Least Squares Means table the differences among means are 
shown (Diff). The differences are tested using the Tukey-Kramer procedure, which adjusts 
for the multiple comparison and unequal subgroup size. The correct P value is the adjusted 
P value (Adj P). For example, the P value for testing the difference between treatments 3 
and 4 is 0.0226. 
 
 
For a balance design the GLM procedure can alternatively be used: 
 
SAS program: 
 
PROC GLM DATA=steer; 
     CLASS block trt; 
     MODEL d_gain = block trt block*trt / ; 
     RANDOM block*trt / TEST; 
     LSMEANS trt / STDERR PDIFF TDIFF ADJUST=TUKEY E=block*trt ; 

 
Explanation: The GLM procedure uses ANOVA estimation. The TEST option within the 
RANDOM statement in the GLM procedure applies an F test with the appropriate 
experimental error in the denominator. The MIXED procedure automatically takes 
appropriate errors for the effect defined as random (the TEST option does not exist in the 
MIXED procedure and it is not necessary). In the GLM procedure and the LSMEANS 
statement it is necessary to define the appropriate mean square (block*trt) for estimation of 
standard errors. This is done by the E = block*trt option. The MIXED procedure gives the 
correct standard errors automatically. Note again that for unbalanced designs the MIXED 
procedure must be used. 
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SAS output of the GLM procedure: 
 
Dependent Variable: d_gain 
 
                        Sum of 
Source           DF     Squares     Mean Square  F Value  Pr > F 
Model            11   49929.83333    4539.07576   25.81   <.0001 
Error            12    2110.00000     175.83333 
Corrected Total  23   52039.83333 
 
    R-Square     Coeff Var      Root MSE    d_gain Mean 
    0.959454      1.638244      13.26022       809.4167 
 
Source      DF  Type III SS   Mean Square  F Value  Pr > F 
block        2   8025.58333    4012.79167    22.82  <.0001 
trt          3  33816.83333   11272.27778    64.11  <.0001 
block*trt    6   8087.41667    1347.90278     7.67  0.0015 
 
Source                  Type III Expected Mean Square 
block                   Var(Error) + 2 Var(block*trt) + Q(block) 
trt                     Var(Error) + 2 Var(block*trt) + Q(trt) 
block*trt               Var(Error) + 2 Var(block*trt) 
 
    Tests of Hypotheses for Mixed Model Analysis of Variance 
 
Dependent Variable: d_gain 
 
Source               DF   Type III SS   Mean Square  F Value  Pr>F 
block                 2   8025.583333    4012.791667   2.98  0.1264 
trt                   3  33817          11272          8.36  0.0145 
Error: MS(block*trt)  6   8087.416667    1347.902778 
 
Source            DF   Type III SS   Mean Square   F Value   Pr>F 
block*trt          6   8087.416667   1347.902778    7.67    0.0015 
Error: MS(Error)  12   2110.000000    175.833333 

 
Explanation: The first table in the GLM output is an ANOVA table for the Dependent 
Variable d_gain. The Sources of variability are Model, Error and Corrected Total. In the 
table are listed degrees of freedom (DF), Sum of Squares, Mean Square, calculated F (F 
value) and P value (Pr > F). The next table shows individual effects, but they are not 
correct for this model because all effects are tested with the residual as the experimental 
error. It should be ignored. The next table (Type III Expected Mean Square) shows 
expectations and structures of mean squares and illustrates how the effects should be tested. 
The correct tests are given in the table Test of Hypotheses for Mixed Model Analysis of 
Variance. The two ANOVA tables show the effects tested with the appropriate experimental 
errors. For block and trt the appropriate experimental error is the block*trt interaction (MS 
block*trt). For block*trt, the appropriate experimental error is residual (MS Error). The P 
value for trt is 0.0145. This value will be the same as from the MIXED procedure if the data 
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are balanced. The output of the least squares means (not shown) is similar to the MIXED 
procedure output, and it will be the same if data are balanced. For unbalanced designs the 
MIXED procedure must be used.  
 
 

17.2 Double Blocking 

If two explained sources of variability are known along with treatment, then the 
experimental units can be grouped into double blocks. For example, animals can be grouped 
to blocks according to their initial weight and also their sex. Consider a design with three 
treatments, four blocks according to initial weight, and two sex blocks. Thus, there are eight 
blocks, with four within each sex. There is a total of 3x2x4 = 24 animals. A possible design 
is: 
 

Males Females 
Block I 

T1 
T2 
T3 

Block II 
T2 
T1 
T3 

Block V 
T3 
T2 
T1 

Block VI 
T1 
T2 
T3 

Block III 
T1 
T3 
T2 

Block IV 
T2 
T1 
T3 

Block VII 
T2 
T1 
T3 

Block VIII 
T3 
T2 
T1 

 
The number of sexes is s = 2, the number of blocks within sex is b = 4, and the number of 
treatments is a = 3. The ANOVA table is: 
 

Source  Degrees of freedom 
Blocks (sb – 1) = 7 
       Sex        (s – 1) =       1 
       Blocks within sex       s(b – 1) =       6 
Treatment (a – 1) = 2 
Block x treatment (sb – 1)(a – 1) = 14 
       Sex x treatment         (s – 1)(a – 1) =       2 
       Residual        s(b – 1)(a – 1) =     12 
Total (abs – 1) = 23 

 
The effects in the table shifted to the right denote partitions of the effects above them. The 
effects of all eight blocks are partitioned into the effects of sex and blocks within sex. The 
interaction of block x treatment is divided into the sex x treatment interaction and residual. 

An experimental design and statistical model depend on how sources of variability are 
defined, as blocks or treatments. If the objective is to test an effect then it is defined as a 
treatment. If an effect is defined just to reduce unexplained variability then it should be 
defined as a block. For example, the aim of an experiment is to investigate the effects of 
three treatments on dairy cows. Groups of cows from each of two breeds were used. The 
cows were also grouped according to their number of lactations: I, II, III and IV. The 
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number of breeds is b = 2, the number of lactations is m = 4, and the number of treatments is 
a = 3. Several experimental designs can be defined depending on the objective and possible 
configurations of animal housing. 
 
Experimental design 1:  
The objective is to test the effect of treatment when breed is defined as a block. The animals 
are first divided according to breed into two pens. For each breed there are cows in each of 
the four lactation numbers. The treatments are randomly assigned within each lactation x 
breed combination. 
 

Breed A Breed B 
Lactation I 

T1 
T2 
T3 

Lactation II 
T2 
T1 
T3 

Lactation I 
T3 
T2 
T1 

Lactation II 
T1 
T2 
T3 

Lactation III 
T1 
T3 
T2 

Lactation IV 
T2 
T1 
T3 

Lactation III 
T2 
T1 
T3 

Lactation IV 
T3 
T2 
T1 

 
The ANOVA table is: 
 

Source  Degrees of freedom 
Breed (b – 1) = 1 
Lactation within breed b(m – 1) = 6 
Treatment (a – 1) = 2 
Breed x treatment (b – 1)(a – 1) = 2 
Residual b(m – 1)(a – 1) = 12 
Total (abm – 1) = 23 

 
 
Experimental design 2:  
If breed is defined as a ‘treatment’, then a factorial experiment is defined with 2 x 3 = 6 
combinations of breed x treatment assigned to a randomized block plan. The lactations are 
blocks and cows in the same lactation are held in the same pen. This design is appropriate if 
the objective is to test the effects of the breed and breed x treatment interaction. In the 
following scheme letters A and B denote breeds: 
 

Lactation I Lactation II Lactation III Lactation IV 

A T1 
B T2 
B T3 
A T2 
B T1 
A T3 

B T3 
A T2 
A T1 
A T1 
B T2 
A T3 

A T1 
B T3 
B T2 
A T2 
B T1 
A T3 

A T2 
A T1 
B T3 
A T3 
B T2 
B T1 
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The ANOVA table is: 
 

Source  Degrees of freedom 
Lactation (m – 1) = 3 
Breed (b – 1) = 1 
Treatment (a – 1) = 2 
Breed x treatment (b – 1)(a – 1) = 2 
Residual (m – 1)[(b – 1) + (a – 1) + (b – 1)(a – 1)] = 15 
Total (amb – 1) = 23 

 
 
Experimental design 3:  
The cows are grouped according to lactations into four blocks. Each of these blocks is then 
divided into two pens and in each one breed is randomly assigned, and treatments are 
randomly assigned within each pen. Thus, there is a total of eight pens. This is a split-plot 
design which will be explained in detail in the next chapter. Note that two experimental 
errors are defined, because two types of experimental units exist: breed within lactation and 
treatment within breed within lactation.  
  

Lactation I Lactation II 

Breed A 
T1 
T2 
T3 

Breed B 
T2 
T1 
T3 

Breed B 
T3 
T2 
T1 

Breed A 
T1 
T2 
T3 

Lactation III Lactation IV 

Breed B 
T1 
T3 
T2 

Breed A 
T2 
T1 
T3 

Breed A 
T2 
T1 
T3 

Breed B 
T3 
T2 
T1 
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The ANOVA table is: 
 

Source  Degrees of freedom 
Lactation (m – 1)= 3 
Breed (b – 1)= 1 
Error a (Lactation x Breed) (m – 1)(b – 1)= 3 
Subtotal (m – 1) + (b – 1) + (m – 1)(b – 1) = 7 
Treatment (a – 1) = 2 
Breed x treatment (b – 1)(a – 1) = 2 
Error b b(a – 1)(m – 1) = 12 
Total (amb – 1) = 23 

 
The most appropriate experimental design depends on the objective and the housing and 
grouping configuration. There may be appropriate designs that make use of combinations of 
double blocking and experimental units defined as pens, paddocks or corrals. 
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Chapter 18  
 
Split-plot Design 

The split-plot design is applicable when the effects of two factors are organized in the 
following manner. Experimental material is divided into several main units, to which the 
levels of the first factor are randomly assigned. Further, each of the main units is again 
divided into sub-units to which the levels of the second factor are randomly assigned. For 
example, consider an experiment conducted on a meadow in which we wish to investigate 
the effects of three levels of nitrogen fertilizer and two grass mixtures on green mass yield. 
The experiment can be designed in a way that one block of land is divided into three plots, 
and on each plot a level of nitrogen is randomly assigned. Each of the plots is again divided 
into two subplots, and on each subplot within plots one of the two grass mixtures is sown, 
again randomly. To obtain repetitions, everything is repeated on several blocks. The name 
split-plot came from this type of application in agricultural experiments. The main units 
were called plots, and the subunits split-plots. The split-plot design plan can include 
combinations of completely randomized designs, randomized block designs, or Latin square 
designs, which can be applied either on the plots or subplots. 

The split-plot design is used when one of the factors needs more experiment material 
than the second factor. For example, in field experiments one of the factors is land tillage or 
application of fertilizer. Such factors need large experimental units, therefore they are 
applied on the main plots. The other factor can be different grass species, which can be 
compared on subplots. As a common rule, if one factor is applied later than the other, then 
this later factor is assigned to subplots. Also, if from experience we know that larger 
differences are to be expected from one of the factors, then that factor is assigned to the 
main plots. If we need more precise analyses of one factor, then that factor is assigned to the 
subplots. 

18.1 Split-Plot Design – Main Plots in Randomized Blocks 

One example of a split-plot design has one of the factors applied to main plots in 
randomized block design. Consider a factor A with four levels (A1, A2, A3 and A4), and a 
factor B with two levels (B1 and B2). The levels of factor A are applied to main plots in three 
blocks. This is a randomized block plan. Each of the plots is divided into two subplots and 
the levels of B are randomly assigned to them.  
One of the possible plans is: 
 
Block 1                                       Block 2                                          Block 3 

B2 B2 B1 B2  B1 B2 B1 B1  B2 B1 B2 B1 
B1 B1 B2 B1  B2 B1 B2 B2  B1 B2 B1 B2 

A4  A1 A2 A3  A2 A1 A4 A3  A1 A2 A4 A3 
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The model for this design is: 

yijk = µ + Blockk + Ai + δik + Bj +(AB)ij + εijk i = 1,...,a; j = 1,...,b ; k = 1,...,n 

where: 
yijk = observation k in level i of factor A and level j of factor B 
µ = the overall mean 
Blockk = the effect of the kth of block 
Ai = the effect of level i of factor A 
Bj = the effect of level j of factor B 
(AB)ij = the effect of the ijth interaction of A x B  
δik = the main plot error (the interaction Blockk x Ai) with mean and   
variance σ2

δ 
εijk = the split-plot error with mean 0 and variance σ2 

Also, µij = µ + Ai + Bj +(AB)ij = the mean of ijth A x B interaction 

n = number of blocks  
a = number of levels of factor A  
b = number of levels of factor B  

It is assumed that main plot and split-plot errors are independent. 
 
The ANOVA table for the design with three blocks, four levels of factor A and two levels of 
factor B: 
 

Source  Degrees of freedom 
Block (n-1) = 2 
Factor A (a-1) = 3 
Main plot error (n-1)(a-1) = 6 
Factor B (b-1) = 1 
A x B (a-1)(b-1)= 3 
Split-plot error a(b-1)(n-1) = 8 
Total (abn-1)= 23 

a = 4 = number of levels of factor A  
b = 2 = number of levels of factor B 
n = 3 = number of blocks 

The effect of factors and interactions can be tested by using an F test.  
The F statistic for factor A:  

error plot Main

A

MS
MSF =  

The main plot error is the mean square for the Block x A interaction.  
 
The F statistic for factor B:  

error  plot-Split

B

MS
MSF =  
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The split-plot error is the residual mean square.  
 
The F statistic for the A x B interaction: 

error  plot-Split

AxB

MS
MSF =  

 
 
Example: An experiment was conducted in order to investigate four different treatments of 
pasture and two mineral supplements on milk yield. The total number of cows available was 
24. The experiment was designed as a split-plot, with pasture treatments (factor A) assigned 
to the main plots and mineral supplements (factor B) assigned to split-plots. The experiment 
was replicated in three blocks. The following milk yields were measured: 
 

Plot Block Pasture Mineral Milk 
(kg)  Plot Block Pasture Mineral Milk 

(kg) 
1 1 4 2 30  7 2 4 1 34 
1 1 4 1 29  7 2 4 2 37 
2 1 1 2 27  8 2 3 1 33 
2 1 1 1 25  8 2 3 2 32 
3 1 2 1 26  9 3 1 2 34 
3 1 2 2 28  9 3 1 1 31 
4 1 3 2 26  10 3 2 1 30 
4 1 3 1 24  10 3 2 2 31 
5 2 2 1 32  11 3 4 2 36 
5 2 2 2 37  11 3 4 1 38 
6 2 1 2 30  12 3 3 1 33 
6 2 1 1 31  12 3 3 2 32 

 
 
The results are shown in the ANOVA table.  
 

Source  SS df MS F 
Block 212.583 2 106.292  
Pasture treatment 71.167 3 23.722 5.46 
Main plot error 26.083 6 4.347  
Mineral supplement 8.167 1 8.167 3.63 
Pasture x Mineral 5.833 3 1.944 0.86 
Split-plot error 18.000 8 2.250  
Total 341.833  23   

 
The critical value for the Pasture treatment is F0.05,3,6 = 4.76. The critical value for the 
Mineral supplement is F0.05,1,8 = 5.32. The critical value for the Pasture treatment x Mineral 
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supplement interaction is F0.05,3,8 = 4.07. From the table it can be concluded that the effect of 
the Pasture treatment was significant.  
 
Means that may be of interest include the means of the levels of factor A, the means of the 
levels of factor B, and the means of the combinations of factors A and B. In a balanced 
design, (i.e. in a design with equal number of observations per level of factors), means are 
estimated using arithmetic means. For example, the means of combinations A and B, 
denoted as µij are estimated with .ijy  . The variance of the estimator depends if blocks are 
defined as fixed or random. For example, if blocks are fixed, the variance of .ijy  is: 

( )[ ] ( ) =++==




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               = ( )221
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The standard error of the mean of combination of factors A and B and fixed blocks is: 

( )22
. ˆˆ1 σσδ +=

n
s

ijy  

Here, n is the number of blocks. The other variances and standard errors of means can 
similarly be derived. The means, estimators and appropriate standard errors are shown in the 
following table: 
 
Effects Means Estimators Standard errors 
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18.1.1 SAS Example: Main Plots in Randomized Blocks 

The SAS program for the example of the effect of four pasture treatments and two mineral 
supplements on milk production of cows is as follows. Four pasture treatments were 
assigned to the main plots in a randomized block design. 
 
SAS program: 
 
DATA spltblk; 
      INPUT block  pasture mineral  milk @@; 
      DATALINES; 
   1 4 2 30   1 4 1 29   1 1 2 27   1 1 1 25 
   1 2 1 26   1 2 2 28   1 3 2 26   1 3 1 24 
   2 2 1 32   2 2 2 37   2 1 2 30   2 1 1 31 
   2 4 1 34   2 4 2 37   2 3 1 33   2 3 2 32 
   3 1 2 34   3 1 1 31   3 2 1 30   3 2 2 31 
   3 4 2 36   3 4 1 38   3 3 1 33   3 3 2 32 
   ; 
PROC MIXED DATA = spltblk; 
     CLASS block pasture mineral; 
     MODEL milk =pasture mineral pasture*mineral; 
     RANDOM block block*pasture/; 
     LSMEANS pasture mineral/ PDIFF TDIFF ADJUST=TUKEY ; 
RUN; 

 
Explanation: The MIXED procedure by default uses Restricted Maximum Likelihood 
(REML) estimation. The CLASS statement defines categorical (classification) variables. 
The MODEL statement defines the dependent variable and the independent variables fitted 
in the model. The RANDOM statement defines random effects (block and block*pasture). 
Here, block*pasture will be used as the experimental error for testing pastures. The 
LSMEANS statement calculates effect means. The options after the slash specify 
calculation of standard errors and tests of differences between least-squares means using a 
Tukey test with the adjustment for multiple comparisons.  
 
SAS output of the MIXED procedure: 
 
                       Covariance Parameter 
                            Estimates 
 

                    Cov Parm          Estimate 
                    block              12.7431 
                    block*pasture       1.0486 
                    Residual            2.2500 
 

      Type 3 Tests of Fixed Effects 
 

                     Num     Den 
 Effect               DF      DF    F Value    Pr > F 
 pasture               3       6       5.46    0.0377 
 mineral               1       8       3.63    0.0932 
 pasture*mineral       3       8       0.86    0.4981 
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                   Least Squares Means 
 

                                         Stand 
Effect    pasture   mineral   Estimate   Error  DF  t Value  Pr>|t| 
 

pasture      1                29.6667    2.2298  6   13.30  <.0001 
pasture      2                30.6667    2.2298  6   13.75  <.0001 
pasture      3                30.0000    2.2298  6   13.45  <.0001 
pasture      4                34.0000    2.2298  6   15.25  <.0001 
mineral               1       30.5000    2.1266  8   14.34  <.0001 
mineral               2       31.6667    2.1266  8   14.89  <.0001 
past*min    1         1       29.0000    2.3124  8   12.54  <.0001 
past*min    1         2       30.3333    2.3124  8   13.12  <.0001 
past*min    2         1       29.3333    2.3124  8   12.69  <.0001 
past*min    2         2       32.0000    2.3124  8   13.84  <.0001 
past*min    3         1       30.0000    2.3124  8   12.97  <.0001 
past*min    3         2       30.0000    2.3124  8   12.97  <.0001 
past*min    4         1       33.6667    2.3124  8   14.56  <.0001 
past*min    4         2       34.3333    2.3124  8   14.85  <.0001 
 

                       Differences of Least Squares Means 
                               Standard 
Effect  pas min _pas _min Est    Error  DF  t Value Adjust.  Adj P 
 
pasture  1        2     -1.0000  1.2038  6  -0.83  Tukey-Kr. 0.8385 
pasture  1        3     -0.3333  1.2038  6  -0.28  Tukey-Kr. 0.9918 
pasture  1        4     -4.3333  1.2038  6  -3.60  Tukey-Kr. 0.0427 
pasture  2        3      0.6667  1.2038  6   0.55  Tukey-Kr. 0.9421 
pasture  2        4     -3.3333  1.2038  6  -2.77  Tukey-Kr. 0.1135 
pasture  3        4     -4.0000  1.2038  6  -3.32  Tukey-Kr. 0.0587 
mineral      1       2  -1.1667  0.6124  8  -1.91  Tukey-Kr. 0.0932 

 
Explanation: The MIXED procedure estimates variance components for random effects 
(Covariance Parameter Estimates) and provides F tests for fixed effects (Type 3 Test of 
Fixed Effects). In the Least Squares Means table, the means (Estimate) with their Standard 
Error are presented. In the Differences of Least Squares Means table the differences among 
means are shown (Estimate). The differences are tested using the Tukey-Kramer procedure, 
which adjusts for the multiple comparison and unequal subgroup size. The correct P value 
is the adjusted P value (Adj P). For example, the P value for the difference between levels 3 
and 4 for pasture is 0.0587. The MIXED procedure calculates appropriate standard errors 
for the least squares means and differences between them. 
 
For a balance design the GLM procedure can also be used (output not shown): 
 
PROC GLM DATA = spltblk; 
    CLASS block pasture mineral; 
     MODEL milk = block pasture block*pasture mineral pasture*mineral; 
     RANDOM block block*pasture / TEST; 
     LSMEANS pasture / STDERR PDIFF TDIFF ADJUST=TUKEY E=block*pasture ; 
     LSMEANS mineral / STDERR PDIFF TDIFF ADJUST=TUKEY; 
RUN; 
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Explanation: The GLM procedure uses ANOVA estimation. The TEST option with the 
RANDOM statement in the GLM procedure applies an F test with the appropriate 
experimental error in the denominator. The MIXED procedure automatically takes 
appropriate errors for the effect defined as random (the TEST options does not exist and it is 
not necessary). In the GLM procedure, if an LSMEANS statement is used, it is necessary to 
define the appropriate mean square for estimation of standard errors. The MIXED 
procedure gives the correct standard errors automatically. Note again that for unbalanced 
designs the MIXED procedure must be used.  
 

18.2 Split-plot Design – Main Plots in a Completely Randomized Design 

In the split-plot design one of the factors can be assigned to the main plots in completely 
randomized design. For example, consider a factor A with four levels (A1, A2, A3 and A4) 
assigned randomly on 12 plots. This is a completely randomized design. Each level of factor 
A is repeated three times. Let the second factor B have two levels (B1 and B2). Thus, each of 
the main plots is divided into two split-plots, and on them levels B1 and B2 are randomly 
assigned. One possible scheme of such a design is:  
 
B2  B2  B1  B2  B1  B2  B1  B1  B1  B2  B1  B2 

B1  B1  B2  B1  B2  B1  B2  B2  B2  B1  B2  B1 

A4  A1  A2  A3  A2  A1  A4  A3  A4  A3  A1  A2 
 
The model is: 

yijk = µ + Ai + δik + Bj +(AB)ij + εijk i = 1,...,a; j = 1,...,b ; k = 1,...,n 
 
where: 

yijk = observation k in level i of factor A and level j of factor B 
µ = the overall mean 
Ai = the effect of level i of factor A  
Bj = the effect of level j of factor B 
(AB)ij = the effect of the ijth interaction of A x B  
δik = the main plot error (the main plots within factor A) with mean 0 and  
variance σ2

δ 
εijk =  the split-plot error with mean 0 and  the variance σ2 

Also, µij = µ + Ai + Bj +(AB)ij = the mean of the ijth A x B interaction 

a = number of levels of factor A  
b = number of levels of factor B  
n = number of repetitions  

It is assumed that main plot and split-plot errors are independent. 
 
The ANOVA table for the design with three replicates, four levels of factor A and two levels 
of factor B: 
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Source  Degrees of freedom 
Factor A (a-1) = 3 
Main plot error a(n-1) = 8 
Factor B (b-1) = 1 
A x B (a-1)(b-1)= 3 
Split-plot error a(b-1)(n-1) = 8 
Total (abn-1)= 23 

 
a = 4 = number of levels of factor A  
b = 2 = number of levels of factor B 
n = 3 = number of repetitions (plots) per level of factor A. 

 
F statistic for factor A: 

error plot Main

A

MS
MSF =  

The main plot error is the mean square among plots within factor A.  
 
The F statistic for factor B is: 

error plot-Split

B

MS
MSF =  

The split-plot error is the residual mean square.  
 
The F statistic for the A x B interaction: 

error plot-Split

AxB

MS
MSF =  

 
 
 
Example: Consider a similar experiment as before: the effects of four different treatments 
of pasture and two mineral supplements are tested on milk yield. The total number of cows 
available is 24. However, this time blocks are not defined. The levels of factor A (pasture 
treatments) are assigned to the main plots in a completely randomized design. 
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Plot Pasture Mineral Milk (kg)  Plot Pasture Mineral Milk (kg) 
1 4 2 30  7 4 1 34 
1 4 1 29  7 4 2 37 
2 1 2 27  8 3 1 33 
2 1 1 25  8 3 2 32 
3 2 1 26  9 1 2 34 
3 2 2 28  9 1 1 31 
4 3 2 26  10 2 1 30 
4 3 1 24  10 2 2 31 
5 2 1 32  11 4 2 36 
5 2 2 37  11 4 1 38 
6 1 2 30  12 3 1 33 
6 1 1 31  12 3 2 32 

 
The results are shown in the ANOVA table.  
 

Source  SS df MS F 
Pasture treatment 71.167 3 23.722 5.46 
Main plot error 238.667 8 29.833  
Mineral supplement 8.167 1 8.167 3.63 
Pasture x Mineral 5.833 3 1.944 0.86 
Split-plot error 18.000 8 2.250  
Total 341.833  23   

 
 
The critical value for the Pasture treatment is F0.05,3,8 = 4.07. The critical value for the 
Mineral supplement is F0.05,1,8 = 5.32. The critical value for the Pasture treatment x Mineral 
supplement interaction is F0.05,3,8 = 4.07.  

Comparing the two examples of split-plot designs, note that the method of randomizing 
Pasture treatment has not influenced the test for Mineral supplement; however, using blocks 
improved the precision of the test for Pasture treatment. Naturally, neighboring paddocks 
tend to be alike, and that is why a split-plot design with randomized blocks is appropriate in 
this research. Note that the sum of squares for plots within Pasture treatment is equal to sum 
of squares for Block plus the sum of squares for Pasture treatment x Block (238.667 = 
212.583 + 26.083).  
 
The means and their estimators and corresponding standard errors for a split-plot design 
with completely randomized assignment of treatments to main plots are shown in the 
following table: 
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Effects Means Estimators Standard errors 
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18.2.1 SAS Example: Main Plots in a Completely Randomized Design 

The SAS program for the example of the effect of four pasture treatments and two mineral 
supplements on milk production of cows when pasture treatments were assigned to the main 
plots as a completely randomized design is as follows. 
 
SAS program: 
 
DATA splt; 
      INPUT plot pasture mineral  milk @@; 
      DATALINES; 
  1 4 2 30  1 4 1 29  2 1 2 27  2 1 1 25 
  3 2 1 26  3 2 2 28  4 3 2 26  4 3 1 24 
  5 2 1 32  5 2 2 37  6 1 2 30  6 1 1 31 
  7 4 1 34  7 4 2 37  8 3 1 33  8 3 2 32 
  9 1 2 34  9 1 1 31 10 2 1 30 10 2 2 31 
 11 4 2 36 11 4 1 38 12 3 1 33 12 3 2 32 
; 
PROC MIXED DATA = splt; 
     CLASS plot pasture mineral; 
     MODEL milk =pasture mineral pasture*mineral; 
     RANDOM plot(pasture) /; 
     LSMEANS pasture mineral/ PDIFF TDIFF ADJUST=TUKEY ; 
RUN; 

 
Explanation: The MIXED procedure by default uses Restricted Maximum Likelihood 
(REML) estimation. The CLASS statement defines categorical (classification) variables. 
Note that plots must be defined as class variable to ensure proper testing of pasture 
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treatment effects. The MODEL statement defines the dependent variable and the 
independent variables fitted in the model. The RANDOM statement defines the random 
effect, plots within pasture treatments (plot(pasture)), which will thus be defined as the 
experimental error for testing pasture. The LSMEANS statement calculates effect means. 
The options after the slash specify calculation of standard errors and tests of differences 
between least squares means using a Tukey test with adjustment for multiple comparisons.  
 
SAS output: 
 
             Covariance Parameter 
                   Estimates 
 
            Cov Parm          Estimate 
           plot(pasture)      13.7917 
           Residual            2.2500 
 
              Type 3 Tests of Fixed Effects 
 
                    Num     Den 
Effect               DF      DF    F Value    Pr > F 
pasture               3       8       0.80    0.5302 
mineral               1       8       3.63    0.0932 
pasture*mineral       3       8       0.86    0.4981 
 
                    Least Squares Means 
 
                              Stand 
Effect  past  min  Estimate   Error    DF    t      Pr>|t| 
pasture  1          29.6667   2.2298   8   13.30   <.0001 
pasture  2          30.6667   2.2298   8   13.75   <.0001 
pasture  3          30.0000   2.2298   8   13.45   <.0001 
pasture  4          34.0000   2.2298   8   15.25   <.0001 
mineral       1     30.5000   1.1562   8   26.38   <.0001 
mineral       2     31.6667   1.1562   8   27.39   <.0001 
 
                                           Differences of Least Squares Means 
 
                                           Stand 
Effect   past min _past _min  Estimate  Error  DF  t   Pr>|t|  Adj  Adj P 
 
pasture  1           2        -1.0000  3.1535  8  -0.32  0.7593  Tukey 0.9881 
pasture  1           3        -0.3333  3.1535  8  -0.11  0.9184  Tukey 0.9995 
pasture  1           4        -4.3333  3.1535  8  -1.37  0.2067  Tukey 0.5469 
pasture  2           3         0.6667  3.1535  8   0.21  0.8379  Tukey 0.9964 
pasture  2           4        -3.3333  3.1535  8  -1.06  0.3214  Tukey 0.7231 
pasture  3           4        -4.0000  3.1535  8  -1.27  0.2403  Tukey 0.6053 
mineral       1          2    -1.1667  0.6124  8  -1.91  0.0932 Tuk-Kr 0.0932 
 
 
 



Chapter 18  Split-plot Design  353 

 

Explanation: The MIXED procedure estimates variance components for random effects 
(Covariance Parameter Estimates) and provides F tests for fixed effects (Type 3 Test of 
Fixed Effects). In the Least Squares Means table, the means (Estimate) with their Standard 
Error are presented. In the Differences of Least Squares Means table the differences among 
means are shown (Estimate). The differences are tested using the Tukey-Kramer procedure, 
which adjusts for multiple comparison and unequal subgroup size. The correct P value is 
the adjusted P value (Adj P). For example, the P value for the difference between levels 3 
and 4 for pasture is 0.6053. The MIXED procedure calculates appropriate standard errors 
for the least squares means and differences between them. 
 
For the balanced design the GLM procedure can also be used (output not shown): 
 
PROC GLM DATA = spltblk; 
    CLASS plot pasture mineral; 
     MODEL milk = pasture plot(pasture) mineral pasture*mineral; 
     RANDOM plot(pasture) / TEST; 
     LSMEANS pasture / STDERR PDIFF TDIFF ADJUST=TUKEY E=plot(pasture) ; 
     LSMEANS mineral / STDERR PDIFF TDIFF ADJUST=TUKEY; 
RUN; 

 
Explanation: The GLM procedure uses ANOVA estimation. The TEST option with the 
RANDOM statement in the GLM procedure applies an F test with the appropriate 
experimental error in the denominator. The MIXED procedure automatically takes 
appropriate errors for the effect defined as random (the TEST options does not exist and is 
not necessary). In the GLM procedure, if an LSMEANS statement is used, it is necessary to 
define the appropriate mean square for estimation of standard errors. The MIXED 
procedure gives the correct standard errors automatically. Note again that for unbalanced 
designs the MIXED procedure must be used.  
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Exercise 

18.1. The objective of the study was to test effects of grass species and stocking density on 
the daily gain of Suffolk lambs kept on a pasture. The experiment was set as a split-plot 
design on three different 1 ha pastures. Each pasture was divided into two plots, one 
randomly assigned to fescue and the other to rye-grass. Each plot is then split into two split-
plots with different numbers of sheep on each (20 and 24). The length of the experiment 
was two weeks. At the end of the experiment the following daily gains were calculated: 
 

Pasture Grass Number of sheep Daily gain (g) 
1 fescue 20 290 
1 fescue 24 310 
1 rye-grass 20 310 
1 rye-grass 24 330 
2 fescue 20 320 
2 fescue 24 350 
2 rye-grass 20 380 
2 rye-grass 24 400 
3 fescue 20 320 
3 fescue 24 320 
3 rye-grass 20 380 
3 rye-grass 24 410 

 
Describe the experimental design. Check the effect of grass species and stocking density on 
daily gain. 
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Chapter 19  
 
Analysis of Covariance 

Analysis of covariance is a term for a statistical procedure in which variability of a 
dependent variable is explained by both categorical and continuous independent variables. 
The continuous variable in the model is called a covariate. Common application of analysis 
of covariance is to adjust treatment means for a known source of variability that can be 
explained by a continuous variable. For example, in an experiment designed to test the 
effects of three diets on yearling weight of animals, different initial weight or different age 
at the beginning of the experiment will influence the precision of the experiment. It is 
necessary to adjust yearling weights for differences in initial weight or initial age. This can 
be accomplished by defining initial weight or age as a covariate in the model. This will 
improve the precision of the experiment, since part of the unexplained variability is 
explained by the covariate and consequently the experimental error is reduced. Another 
application of analysis covariance includes testing differences of regression slopes among 
groups. For example, a test to determine if the regression of daily gain on initial weight is 
different for males than females.  

19.1 Completely Randomized Design with a Covariate 

In a completely randomized design with a covariate the analysis of covariance is utilized for 
correcting treatment means, controlling the experimental error, and increasing precision. 
The statistical model is: 

yij = β0 + β1xij + τi + εij i = 1,..,a;  j = 1,...,n 

where: 
yij = observation j in  group i (treatment i) 
β0 = the intercept 
β1 = the regression coefficient  
xij = a continuous independent variable with  mean µx (covariate) 
τi = the fixed effect of  group or treatment i   
εij = random error 

The overall mean is: µ = β0 + β1µx  
The mean of group or treatment i is: µi = β0 + β1µx + τi 
where µx is the mean of the  covariate x. 
 

The assumptions are: 
1) the covariate is fixed and independent of treatments 
2) errors are independent of each other 
3) usually, errors have a normal distribution with mean 0 and homogeneous variance σ2 
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Example: The effect of three diets on daily gain of steers was investigated. The design was 
a completely randomized design. Weight at the beginning of the experiment (initial weight) 
was recorded, but not used in the assignment of animals to diet. At the end of the 
experiment the following daily gains were measured: 
 

Diet A Diet B Diet C 
Initial weight 

(kg) 
Gain 

(g/day) 
Initial weight 

(kg) 
Gain 

(g/day) 
Initial weight 

(kg) 
Gain 

(g/day) 
350 970 390 990 400 990 
400 1000 340 950 320 940 
360 980 410 980 330 930 
350 980 430 990 390 1000 
340 970 390 980 420 1000 

 
To show the efficiency of including the effect of initial weight in the model, the model for 
the completely randomized design without a covariate is first fitted. The ANOVA table is: 
 

Source  SS df MS F 
Treatment 173.333 2 86.667 0.16 
Residual 6360.000 12 530.000  
Total 6533.333 14   

 
 
The critical value for the treatment effect is F0.05,2,12 = 3.89. Thus, the effect of treatments is 
not significant. When initial weight is included in the model as a covariate the ANOVA table 
is: 
 

Source  SS df MS F 
Initial weight 4441.253 1 4441.253 46.92 
Treatment 1050.762 2 525.381032 5.55 
Residual 1041.319 11 94.665  
Total 6533.333 14   

 
Now, the critical value for treatment is F0.05,2,11 = 3.98. The critical value for the regression 
of daily gain on initial weight is F0.05,1,11 = 4.84. Since the calculated F values are 5.55 and 
46.92, the effects of both the initial weight and treatment are significant. It appears that the 
first model was not correct. By including initial weights in the model a significant 
difference between treatments was found.  
 
 
19.1.1 SAS Example for a Completely Randomized Design with a Covariate 

The SAS program for the example of the effect of three diets on daily gain of steers is as 
follows. 
 
SAS program: 
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DATA gain; 
INPUT treatment $ initial gain @@; 
 
DATALINES; 
A 350  970   B 390  990   C 400  990 
A 400 1000   B 340  950   C 320  940 
A 360  980   B 410  980   C 330  930 
A 350  980   B 430  990   C 390 1000 
A 340  970   B 390  980   C 420 1000 
; 
PROC GLM; 
CLASS treatment; 
MODEL gain = initial treatment  / SOLUTION SS1; 
LSMEANS treatment / STDERR PDIFF TDIFF ADJUST=TUKEY; 
RUN; 

 
Explanation: The GLM procedure is used. The CLASS statement defines treatment as a 
classification variable. The statement, MODEL gain = initial treatment defines gain as the 
dependent variable, and initial and treatment as independent variables. Since the variable 
initial is not listed in the CLASS statement, the procedure uses it as a continuous variable. 
The SOLUTION option directs estimates of regression parameters and the SS1 option 
directs the use of type I sums of squares (sequential sum of squares) which are appropriate 
for this kind of analysis. Sequential sums of squares remove the effect of the covariate 
before consideration of effects of treatment. The LSMEANS statement estimates the 
treatment means adjusted for the effect of the covariate. Options after the slash calculate 
standard errors and test the difference between means using the Tukey test. 
 
SAS output: 
 
Dependent Variable: gain 
 

                               Sum of 
Source           DF        Squares    Mean Square   F Value   Pr > F 
Model             3    5492.014652    1830.671551     19.34   0.0001 
Error            11    1041.318681      94.665335 
Corrected Total  14    6533.333333 
 

  R-Square     Coeff Var      Root MSE    gain Mean 
  0.840614      0.996206      9.729611        976.6667 
 

Source      DF      Type I SS    Mean Square   F Value   Pr > F 
initial      1    4441.252588    4441.252588     46.92   <.0001 
treatment    2    1050.762064     525.381032      5.55   0.0216 
 

                                  Standard 
Parameter        Estimate           Error  t Value   Pr > |t| 
Intercept     747.1648352 B   30.30956710    24.65    <.0001 
initial         0.6043956      0.08063337     7.50    <.0001 
treatment   A  15.2527473 B    6.22915600     2.45    0.0323 
treatment   B  -6.0879121 B    6.36135441    -0.96    0.3591 
treatment   C   0.0000000 B      .              .       . 



358  Biostatistics for Animal Science 

 

NOTE: The X'X matrix has been found to be singular, and a 
generalized inverse was used to solve the normal equations. 
Terms whose estimates are followed by the letter 'B' are not 
uniquely estimable. 
 
                        Least Squares Means 
         Adjustment for Multiple Comparisons: Tukey-Kramer 
 
                gain          Standard                  LSMEAN 
treatment       LSMEAN           Error    Pr > |t|      Number 
   A         988.864469        4.509065      <.0001           1 
   B         967.523810        4.570173      <.0001           2 
   C         973.611722        4.356524      <.0001           3 
 
                     Least Squares Means for Effect treatment 
                    t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                 Dependent Variable: gain 
 
        i/j              1             2             3 
           1                    3.198241      2.448606 
                                  0.0213        0.0765 
           2      -3.19824                    -0.95702 
                    0.0213                      0.6175 
           3      -2.44861      0.957015 
                    0.0765        0.6175 
 
Explanation: The first table is an ANOVA table for the dependent variable gain. The sources 
of variation are Model, residual (Error) and Corrected Total. In the table are listed degrees 
of freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P value 
(Pr>F). In the next table F tests of the effects of the independent variables initial and 
treatment are given. It is appropriate to use sequential sums of squares (Type I SS) because 
the variable initial is defined in order to adjust the effect of treatment, and treatment does 
not affect initial. The F and P values for treatment are 5.55 and 0.0216. Thus, the effect of 
treatment is significant in the sample. The next table presents parameter estimates. The letter 
‘B’ behind the estimates denotes that the corresponding solution is not unique. Only the 
slope (initial) has a unique solution (0.6043956). Under the title Least Squares Means the 
means adjusted for differences in initial weight (LSMEAN) with their Standard Errors are 
shown. At the end the Tukey test between means of all treatment pairs are given. The t with 
corresponding P values are shown. For example, in the column 3 and row 1 the numbers 
2.448606 and 0.0765 denote the t and P values between treatments 1 and 3. The P values 
are corrected for multiple comparisons and possible unbalanced data. 

19.2 Testing the Difference between Regression Slopes 

The difference of regression curves between groups can be tested by defining an interaction 
between a categorical variable representing the groups and the continuous variable 
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(covariate). The interaction produces a separate regression curve for each group. The model 
including the group effect and simple linear regression is: 

yij = β0 + τi + β1xij + Σi β2i(τ*x)ij + εij i = 1,...,a;  j = 1,...,n 

where: 
yij = observation j in  group i  
τi = the effect of group i  
β0, β1 and β2i = regression parameters  
xij = the value of the continuous independent variable for  observation j in  group i 
(τ*x)ij = interaction of group x covariate 
εij = random error 

The overall mean is: µ = β0 + β1µx 
The mean of group i is: µi = β0 + τi + β1µx + β2iµx  
The intercept for group i is: β0 + τi  
The regression coefficient for group i is: β1 + β2i 
 
The hypotheses are the following: 

a) H0: τi = 0 for all i, there is no group effect 
H1: τi ≠ 0 for at least one i, there is a group effect  

b) H0: β1 = 0, the overall slope is equal to zero, there is no regression 
H1: β1 ≠ 0, the overall slope is different from zero, there is a regression 

c) H0: β2i = 0, the slope in group i is not different than the average slope 
H1: β2i ≠ 0, the slope in group i is different than the average slope.  

The difference between regression curves can also be tested by using a multiple regression. 
The categorical variable (group) can be defined as a set of binary variables with assigned 
numerical values of 0 or 1. The value 1 denotes that an observation belongs to some 
particular group, and 0 denotes that the observation does not belong to that group. Thus, for 
a number of groups there are (a – 1) new variables that can be used as independent 
variables in a multiple regression setting. For each group there is a regression coefficient 
that can be tested against zero, that is, if the slope for that group is different than the average 
slope of all groups. This multiple regression model is equivalent to the model with the 
group effect as a categorical variable, a covariate and their interaction, and parameter 
estimates and inferences are in both cases the same. 

To show the logic of testing the difference between regression slopes, a simple model 
with two groups will be shown. Assume a regression of variable y on variable x. The 
variables are measured on animals that are grouped according to sex. There are two 
questions of interest: 

a) whether females and males have separate regression curves  
b) whether there is a difference between regression slopes for males and females. 

For this example the multiple regression model is: 

yi = β0 + β1x1i + β2x2i+ β3x1ix2i + εi 
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where x1i is a continuous variable and x2i is a variable that explains if an animal is a male or 
female with values x2i = 1 if male and 0 if female. The term x1ix2i denotes interaction 
between x1i and x2i.  
 
Figure 19.1 shows possible models that can explain changes in the dependent variable due 
to changes in a continuous independent variable. 
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Figure 19.1  Regression models with sex as a categorical independent variable: a) no 
difference between males (M) and females (F); b) a difference exists but the slopes are 
equal; c) a difference exists and slopes are different 

 
There are three possible models.  
 
Model a): No difference between males and females. The expectation of the dependent 
variable is: 

E(yi) = β0 + β1xi 

One model explains changes in y when x is changed. 
 
Model b): A difference exists between males and females, but the slopes are equal. The 
expectation is:  

E(yi) = β0 + β1x1i + β2x2i 

For males (M) the model is: 

E(yi) = β0 + β1x1i + β2(1) = (β0 + β2) + β1x1i  

For females (F) the model is: 

E(yi) = β0 + β1x1i + β2(0) = β0 + β1x1i 

The hypotheses H0: β2 = 0 vs. H1: β2 ≠ 0 test whether the same line explains the regression 
for both males and females. If H0 is true the lines are the same, and if H1 is true the lines are 
different but parallel. The difference between males and females is equal to β2 for any value 
of x1. 
 
Model c): A difference between males and females is shown by different regression slopes, 
indicating interaction between x1i and x2i. The expectation of the dependent variable is: 

E(yi) = β0 + β1x1i + β2x2i+ β3x1ix2i 
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For males (M) the model is: 

E(yi) = (β0 + β2) + (β1 + β3)x1i  

For females (F) the model is:  

E(yi) = β0 + β1x1i + β2(0) + β3x1i(0) = β0 + β1x1i 

The hypotheses H0: β3 = 0 vs. H1: β3 ≠ 0 tests whether the slopes are equal. If H0 is true 
there is no interaction and the slope is the same for both males and females. 
 
 
Example: The effect of two treatments on daily gain of steers was investigated. A 
completely randomized design was used. The following initial weights and daily gains were 
measured: 
 

Treatment A Treatment B 
Initial 

weight (kg) 
Gain 

(g/day) 
Initial 

weight (kg) 
Gain 

(g/day) 
340 900 340 920 
350 950 360 930 
350 980 370 950 
360 980 380 930 
370 990 390 930 
380 1020 410 970 
400 1050 430 990 

 
Is there a significant difference in daily gains between the two treatment groups and does 
the initial weight influence daily gain differently in the two groups? 
 
Figure 19.2 indicates a linear relationship between initial weight and daily gain measured in 
the experiment. Also, the slopes appear to be different which indicates a possible interaction 
between treatments and initial weight. 
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Figure 19.2  Daily gain of two treatment groups of steers dependent on initial weight 
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The following model can be defined: 

yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi i = 1,…,7 

where: 
yi = daily gain of steer i  
β0, β1, β2, β3 = regression parameters 
x1i = initial weight of steer i  
x2i = assignment to treatment (1 if treatment A, 0 if treatment B) 
x1ix2i = interaction of treatment x initial weight 
εj = random error 

 
The hypotheses are: 

H0: β2 = 0 vs. H1: β2 ≠ 0  

If H0 is true the curves are identical. If H1 is true the curves are different but parallel.  

H0: β3 = 0 vs. H1: β3 ≠ 0  

If H0 is true there is no interaction and the regression slopes are identical. If H1 is true the 
slopes are different. The ANOVA table is: 
 

Source  SS df MS F 
Model  19485.524 3 6495.175 22.90 
Residual 2835.905 10 283.590  
Total 22321.429 13   

 
The critical value for the model is F0.05,3,10 = 3.71. The null hypotheses if particular 
parameters are equal to zero can be tested using t tests. The parameter estimates with their 
corresponding standard errors and t tests are shown in the following table: 
 

Parameter Estimate Std. error t value Critical t 

β0 663.505 86.833 7.641 2.228 
β1 0.737 0.226 3.259 2.228 
β2 –469.338 149.050 –3.149 2.228 
β3 1.424 0.402 3.544 2.228 

 
Note that the absolute value of the calculated t is greater than the critical value for all 
parameters, thus all parameters are required in the model. There are effects of initial weight, 
treatments and their interaction on daily gain of steers.  
 
The estimated regression for treatment A is:  

E(yi) = (β0 + β2) + (β1 + β3) x1i =  
(663.505 – 469.338) + (0.737 + 1.424) x1i = 194.167 + 2.161 x1i  

The estimated regression for treatment B is:  

E(yi) = β0 + β1 x1i = 663.505 + 0.737 x1i 
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19.2.1 SAS Example for Testing the Difference between Regression Slopes 

A SAS program for the example examining the effect of two treatments and initial weight 
on daily gain of steers is as follows: 
 
SAS program: 
 
DATA gain; 
INPUT treatment $ initial gain @@; 
DATALINES; 
A   340   900   A   350   950   A   350   980 
A   360   980   A   370   990   A   380  1020 
A   400  1050   B   340   920   B   360   930 
B   370   950   B   380   930   B   390   930 
B   410   970   B   430   990 
; 
PROC GLM; 
CLASS treatment; 
MODEL gain = initial treatment treatment*initial / SOLUTION SS1; 
RUN; 
 
PROC GLM; 
CLASS treatment; 
MODEL gain = treatment treatment*initial / NOINT SOLUTION SS1; 
RUN; 

 
Explanation: The GLM procedure is used. The CLASS statement defines treatment as a 
categorical variable. The statement, MODEL gain = initial treatment treatment*initial 
defines gain as  the dependent variable, treatment as a categorical independent variable, 
initial as a continuous independent variable, and the interaction of treatment*gain. A test of 
interaction treatment*initial shows if regressions are different in different treatments. Two 
GLM procedures are used; the first gives the correct F tests, and the second estimates  the 
regression parameters.  
 
SAS output: 
 
Dependent Variable: GAIN 
                           Sum of      Mean 
Source           DF       Squares     Square    F Value  Pr > F 
Model             3   19485.52365   6495.17455    22.90  0.0001 
Error            10    2835.90493    283.59049 
Corrected Total  13   22321.42857 
 
          R-Square         C.V.      Root MSE         GAIN Mean 
           0.872951     1.747680       16.84015         963.5714 
 
Source            DF    Type I SS   Mean Square  F Value   Pr > F 
INITIAL            1   5750.54735    5750.54735   20.28   0.0011 
TREATMENT          1  10173.11966   10173.11966   35.87   0.0001 
INITIAL*TREATMENT  1   3561.85664    3561.85664   12.56   0.0053 
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                               T for H0:   Pr > |T|   Std Error of 
Parameter          Estimate    Parameter=0                Estimate 
INTERCEPT       663.5051546 B     7.64     0.0001     86.8331663 
INITIAL           0.7371134 B     3.26     0.0086      0.2261929 
TREATMENT   A  -469.3384880 B    -3.15     0.0104    149.0496788 
            B     0.0000000 B      .        .           . 
INITIAL*TREAT A   1.4239977 B     3.54     0.0053      0.4018065 
              B   0.0000000 B      .        .           . 
 
NOTE: The X'X matrix has been found to be singular and a generalized 
inverse was used to solve the normal equations. Estimates followed 
by the letter 'B' are biased, and are not unique estimators of the 
parameters. 
 
                               T for H0:  Pr > |T|  Std Error of 
Parameter          Estimate   Parameter=0              Estimate 
TREATMENT     A  194.1666667     1.60      0.1401    121.1437493 
              B  663.5051546     7.64      0.0001     86.8331663 
INITIAL*TREAT A    2.1611111     6.51      0.0001      0.3320921 
              B    0.7371134     3.26      0.0086      0.2261929 

 
Explanation: The first table is an ANOVA table for the dependent variable gain. The sources 
of variation are Model, residual (Error) and Corrected Total. In the table are listed degrees 
of freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P value 
(Pr>F). In the next table  F tests for initial, treatment and initial * treatment interaction are 
given. The Type I SS, (sequential sum of squares) were used. In this analysis the most 
important part is to test which regression parameters are needed in the model. The next table 
shows parameter estimates with their corresponding standard errors and t tests. The letter B 
following the estimates indicates that the estimate is not unique. The solutions given in the 
last table are the final part of the output of the second GLM procedure. These are the 
regression parameter estimates for each group. The estimated regression for treatment A is: 

gain = 194.1666667 + 2.161111 initial  
The estimated regression for treatment B is: 

gain = 663.5051546 + 0.7371134 initial 
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Chapter 20  
 
Repeated Measures 

Experimental units are often measured repeatedly if the precision of single measurements is 
not adequate or if changes are expected over time. Variability among measurements on the 
same experimental unit can be homogeneous, but may alternatively be expected to change 
through time. Typical examples are milk yield during lactation, hormone concentrations in 
blood, or growth measurements over some period. In a repeated measures design the effect 
of a treatment is tested on experimental units that have been measured repeatedly over time. 
An experimental unit measured repeatedly is often called a subject. Note that 'change-over' 
designs can be considered repeated measured designs, but they differ in that two or more 
treatments are assigned to each animal. Here we will consider repeated measurements on an 
experimental unit receiving the same treatment over time.  

The problem posed by repeated measurements on the same subject is that there can be 
correlation between the repeated measurements. For example, if a particular cow has high 
milk yield in the third month of lactation, it is likely that she will also have high yield in the 
fourth month, regardless of treatment. Measurements on the same animal are not 
independent. It may be necessary to define an appropriate covariance structure for such 
measurements. Since the experimental unit is an animal and not a single measurement on 
the animal, it is consequently necessary to define the appropriate experimental error for 
testing hypotheses. There may be a treatment x period interaction, that is, the effect of 
particular treatment may be different in different periods.  

Models for analyzing repeated measures can have the effects of period (time) defined 
as categorical or continuous independent variables. They can also include homogeneous or 
heterogeneous variances and covariances by defining appropriate covariance structures or 
covariance functions. 

20.1 Homogeneous Variances and Covariances among Repeated 
Measures 

The simplest model for describing repeated measures defines equal variance of and 
covariance between measures, regardless of distance in time or space. The effects of periods 
can be included and accounted for in the model by defining periods as values of a 
categorical independent variable. For example, consider an experiment with a treatments 
and b animals for each treatment with each animal measured n times in n periods. The 
model is: 

yijk = µ + τi + δij + tk +(τ*t)ik + εijk i = 1,...,a;  j = 1,...,b;  k = 1,...,n 

where: 
yijk = observation ijk 
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µ = the overall mean 
τi = the effect of treatment i  
tk = the effect of period k  
(τ*t)ik = the effect of interaction between treatment i and period k  
δij = random error with mean 0 and variance σ2

δ., the variance between animals 
(subjects) within treatment and it is equal to the covariance between repeated 
measurements within animals  

εijk = random error with the mean 0 and variance σ2, the variance between 
measurements within animals 

Also, a = the number of treatments; b = the number of subjects (animals); n = the number of 
periods 
 
The mean of treatment i in period k is: µik = τi + tk + (τ*t)ik  
 
The variance between observations is: 

Var(yijk) = Var(δij + εijk)= σ2
δ + σ2  

The covariance between observations on the same animal is: 

Cov(yijk, yijk’) = Var(δij) = σ2
δ  

It is assumed that covariances between measures on different subjects are zero. 
 
An equivalent model with a variance-covariance structure between subjects included the 
error term (ε’ijk) can be expressed as: 

yijk = µ + τi + tk + (τ*t)ik + ε’ijk i = 1,...,a;  j = 1,...,b;  k = 1,...,n 

The equivalent model has one error term (ε’ijk) but this error term is of a structure containing 
both variability between and within subjects. For example, a structure for four 
measurements on one subject shown as a matrix is: 
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where:  

σ2 = variance within subjects 
σ 2

δ  = covariance between measurements within subjects = variance between 
subjects 

 
This variance – covariance structure is called compound symmetry, because it is diagonally 
symmetric and it is a compound of two variances.  
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Example: The effect of three treatments (a = 3) on milk fat yield of dairy cows was 
investigated. Fat yield was measured weekly for 6 weeks (n = 6). There were four cows per 
treatment (b = 4), and a total of 12 cows in the experiment (ab = 12). A table with the 
sources of variability, degrees of freedom and appropriate experimental errors defined is as 
follows: 
 

Source  Degrees of freedom 
Treatment (a – 1) = 2 
Error for treatments 
       (Cow within treatment) a(b – 1) = 9 

Weeks (n – 1) = 5 
Treatment x weeks (a – 1)(n – 1) = 10 
Error a(b – 1)(n – 1) = 45 
Total (abn – 1) = 71 

 
The experimental error for testing the effect of treatment is cow within treatment.  
 
 
If changes of a dependent variable in time can be explained with a regression function, 
periods can be defined as values of a continuous variable. Note that the variance structure 
between measures can still be defined. When period is a continuous variable and a linear 
change is assumed, the model is: 
 

yijk = µ + τi + δij + β1 (tk) + β2i(τ*t)ik + εijk i = 1,..., a;  j = 1,....,b;  k = 1,...,n 
 
where: 

yijk = observation ijk  
µ = the overall mean 
τi = the effect of treatment i  
δij = random error with mean 0 and variance σ2

δ  
β1 = regression coefficient of observations on periods  
β2i = regression coefficient of observations on the treatment x period interaction 
(τ*t)ik  
εijk = random error with mean 0 and variance σ 2, the variance between 
measurement within animals. 

Also, a = the number of treatments; b = the number of subjects (animals); n = the number of 
periods 
 
 
 
Example: A table with sources of variability, degrees of freedom, and appropriate error 
terms for the example with three treatments, four animals per treatment, and six weekly 
measurements per animal is: 
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Source  Degrees of freedom 
Treatment (a – 1) = 2 
Error for treatments 
       (Cow within treatment) a(b – 1) = 9 

Weeks 1 = 1 
Treatment x weeks (a – 1) = 2 
Error ab(n – 1) – a = 57 
Total (abn – 1) = 71 

 
 
20.1.1 SAS Example for Homogeneous Variances and Covariances 

The SAS programs for repeated measurements of variables with homogeneous variances 
and covariances will be shown on the following example. The aim of this experiment was to 
test the difference between two treatments on gain of kids. A sample of 18 kids was chosen, 
nine animals for each treatment. One kid in treatment 1 was removed from the experiment 
due to illness. The experiment began at the age of 8 weeks. Weekly gain was measured at 
ages 9, 10, 11 and 12 weeks. Two approaches will be shown: a) using week as a categorical 
variable, and b) using week as a continuous variable. The measurements are shown in the 
following table:  
 

 Week Kid 1 Kid 2 Kid 3 Kid 4 Kid 5 Kid 6 Kid 7 Kid 8 
9 1.2 1.2 1.3 1.1 1.2 1.1 1.1 1.3 
10 1.0 1.1 1.4 1.1 1.3 1.1 1.2 1.3 
11 1.1 1.4 1.4 1.2 1.2 1.1 1.3 1.3 

Tr
ea

tm
en

t 
1 

12 1.3 1.5 1.6 1.3 1.3 1.2 1.5 1.4 
 

 Week Kid 9 Kid 10 Kid 11 Kid 12 Kid 13 Kid 14 Kid 15 Kid 16 Kid 17 
9 1.2 1.3 1.5 1.4 1.2 1.0 1.4 1.1 1.2 
10 1.5 1.2 1.7 1.5 1.2 1.1 1.8 1.3 1.5 
11 1.9 1.4 1.6 1.7 1.4 1.4 2.1 1.4 1.7 

Tr
ea

tm
en

t 
2 

12 2.1 1.7 1.7 1.8 1.6 1.5 2.1 1.8 1.9 
 
 
SAS program, weeks defined as a categorical variable: 
 
DATA reps; 
INPUT kid week treatment gain @@; 
DATALINES; 
 1  9 1 1.2    1 10 1 1.0    1 11 1 1.1    1 12 1 1.3 
 2  9 1 1.2    2 10 1 1.1    2 11 1 1.4    2 12 1 1.5 
 3  9 1 1.3    3 10 1 1.4    3 11 1 1.4    3 12 1 1.6 
 4  9 1 1.1    4 10 1 1.1    4 11 1 1.2    4 12 1 1.3 
 5  9 1 1.2    5 10 1 1.3    5 11 1 1.2    5 12 1 1.3 
 6  9 1 1.1    6 10 1 1.1    6 11 1 1.1    6 12 1 1.2 
 7  9 1 1.1    7 10 1 1.2    7 11 1 1.3    7 12 1 1.5 
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 8  9 1 1.3    8 10 1 1.3    8 11 1 1.3    8 12 1 1.4 
 9  9 2 1.2    9 10 2 1.5    9 11 2 1.9    9 12 2 2.1 
10  9 2 1.3   10 10 2 1.2   10 11 2 1.4   10 12 2 1.7 
11  9 2 1.5   11 10 2 1.7   11 11 2 1.6   11 12 2 1.7 
12  9 2 1.4   12 10 2 1.5   12 11 2 1.7   12 12 2 1.8 
13  9 2 1.2   13 10 2 1.2   13 11 2 1.4   13 12 2 1.6 
14  9 2 1.0   14 10 2 1.1   14 11 2 1.4   14 12 2 1.5 
15  9 2 1.4   15 10 2 1.8   15 11 2 2.1   15 12 2 2.1 
16  9 2 1.1   16 10 2 1.3   16 11 2 1.4   16 12 2 1.8 
17  9 2 1.2   17 10 2 1.5   17 11 2 1.7   17 12 2 1.9 
; 
 
PROC MIXED DATA=reps; 
      CLASS kid treatment week; 
      MODEL gain = treatment week treatment*week / ; 
      REPEATED / TYPE=CS SUB=kid(treatment) ; 
      LSMEANS treatment / DIFF; 
RUN; 

 
Explanation: The MIXED procedure was used. The CLASS statement defines categorical 
variables. The MODEL statement defines the dependent variable gain, and independent 
variables treatment, week and treatment*week interaction. The REPEATED statement 
defines the variance structure for repeated measurements. The subject (SUB = kid) defines 
the variable on which repeated measurements were taken. The type of variance-covariance 
structure is compound symmetry (TYPE = CS). The LSMEANS statement calculates the 
treatment means.  
 
SAS output: 
 
            Covariance Parameter Estimates 
 
        Cov Parm     Subject           Estimate 
        CS           kid(treatment)     0.02083 
        Residual                        0.01116 
 
                    Fit Statistics 
 
         -2 Res Log Likelihood           -50.3 
         AIC (smaller is better)         -46.3 
         AICC (smaller is better)        -46.1 
         BIC (smaller is better)         -44.6 
 
     Null Model Likelihood Ratio Test 
 
                           DF    Chi-Square      Pr > ChiSq 
                            1         31.13          <.0001 
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                  Type 3 Tests of Fixed Effects 
 
                           Num     Den 
        Effect              DF      DF    F Value    Pr > F 
        treatment            1      15      13.25    0.0024 
        week                 3      45      40.09    <.0001 
        treatment*week       3      45       9.20    <.0001 
 
                    Least Squares Means 
 
                              Standard 
Effect  treatment   Estimate    Error    DF  t Value  Pr > |t| 
treatment    1       1.2531    0.05434   15   23.06    <.0001 
treatment    2       1.5250    0.05123   15   29.77    <.0001 
 
             Differences of Least Squares Means 
 
                                 Standard 
Effect   treat _treat  Estimate    Error    DF  t Value  Pr > |t| 
treatment   1     2    -0.2719    0.07468   15   -3.64    0.0024 
 

Explanation: The table Covariance Parameter Estimates gives the following estimates: 
CS = the variance between subjects, Residual = the estimate of error. The Fit Statistics give 
several criteria about fitting the model. The Null Model Likelihood Ratio tests significance 
and appropriateness of the model. The Type 3 Tests of Fixed Effects tests the Effect in the 
model. Degrees of freedom for the effects are Num DF, degrees of freedom for the error 
terms are Den DF, and P values are (Pr > F). The P values for fixed effects in the model 
are all smaller than 0.05 indicating that all effects are significant. Note the different 
denominator degrees of freedom (Den DF) indicate that appropriate errors were used for 
testing particular effects. In the table Least Squares Means, estimated means (Estimate) with 
the corresponding Standard Errors are shown (Least Squares Means for the treatment * 
week interaction are not shown). The table Differences of Least Squares Means shows the 
difference between treatments  (Estimate), the standard error of the difference (Standard 
Error) and P value (Pr > |t|).  
 

SAS program, week defined as a continuous variable: 
 
PROC MIXED DATA=reps; 
      CLASS kid treatment; 
      MODEL gain = treatment week treatment*week / HTYPE=1 SOLUTION; 
      REPEATED / TYPE=CS SUB=kid(treatment) ; 
RUN; 

 
Explanation: The MIXED procedure was used. Note, that the variable week is not listed in 
the CLASS statement and the procedure uses it as a continuous variable. The option 
HTYPE = 1 under the MODEL statement tests the effects sequentially as is appropriate for 
an analysis of continuous variables. The SOLUTION option directs output of regression 
parameters estimates. An LSMEANS statement could be used to direct calculation of the 
treatment means, but it is not shown here. 
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SAS output: 
 
       Covariance Parameter Estimates 
 
   Cov Parm     Subject           Estimate 
   CS           kid(treatment)     0.02085 
   Residual                        0.01106 
 
               Fit Statistics 
 
    -2 Res Log Likelihood           -59.9 
    AIC (smaller is better)         -55.9 
    AICC (smaller is better)        -55.7 
    BIC (smaller is better)         -54.3 
 
       Null Model Likelihood Ratio Test 
 
         DF    Chi-Square      Pr > ChiSq 
          1         32.98          <.0001 
 
          Solution for Fixed Effects 
 
                                   Stand 
Effect          treat  Estimate    Error   DF  t Value  Pr > |t| 
Intercept              -0.4000    0.1724   15   -2.32    0.0348 
treatment        1      0.9575    0.2513   15    3.81    0.0017 
treatment        2         0         .      .      .       . 
week                    0.1833    0.01568  49   11.69    <.0001 
week*treatment   1     -0.1171    0.02285  49   -5.12    <.0001 
week*treatment   2          0        .       .        .       . 
 
               Type 1 Tests of Fixed Effects 
 
                       Num     Den 
    Effect              DF      DF    F Value    Pr > F 
    treatment            1      15      13.25    0.0024 
    week                 1      49     126.38    <.0001 
    week*treatment       1      49      26.25    <.0001 
 
                         Least Squares Means 
 
                                Standard 
Effect   treatment   Estimate     Error    DF  t Value  Pr > |t| 
treatment  1          1.2531     0.05434   15    23.06    <.0001 
treatment  2          1.5250     0.05123   15    29.77    <.0001 
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                 Differences of Least Squares Means 
 
                                 Stand 
Effect   treat _treat  Estimate  Error     DF  t Value  Pr>|t| 
treatment  1      2     -0.2719   0.07468  15   -3.64   0.0024 

 
Explanation: Most of the output is similar to the example of the model with week as a 
categorical variable. The difference is in output of regression parameter estimates (Solution 
for Fixed Effects). The parameter definitions Effect treatment, Estimates, Standard Errors, 
degrees of freedom (DF), t Values and P values (Pr > |t|) are shown. The t tests indicate if 
the parameters are different to zero. The P values for treatment and week*treatment for the 
treatment 1 are 0.0017 and <0.0001, respectively. This indicates that regression of gain on 
week is significant. Also, there is week*treatment interaction, indicating the effect of each 
treatment over time is different. The table Type 1 Test of Fixed Effects shows that all the 
effects in the model are significant.  

20.2 Heterogeneous Variances and Covariances among Repeated 
Measures 

Covariances (or correlations) are not always constant between measurements. There is a 
variety of covariance structure models which can be used to explain differences in 
covariances. The most general model, called an unstructured model, defines different 
variances for each period and different covariances between periods, but again assumes that 
covariance between measurements on different animals is zero. An example of unstructured 
covariances for four measures within subjects is:  
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where: 
σi

2 = variance of measures in period i 
σij = covariance within subjects between measures in periods i and j 

Another model is called an autoregressive model. It assumes that with greater distance 
between periods, correlations are smaller. The correlation is ρ t, where t is the number of 
periods between measurements. An example of the correlation matrix of the autoregressive 
structure for four measurements within subjects is: 
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where:  
σ2 = variance within subjects 
ρ t = correlation within subjects between measurements taken t periods apart, 
t = 0,1,2,3 

Another variance structure is the Toeplitz structure, in which correlations between 
measurements also depend on the number of periods. Measurements taken one period apart 
have the same covariance, for example σ12 = σ23, measurements two periods apart have the 
same covariance but different from the first, for example σ13 = σ24 ≠ σ12. An example of the 
Toeplitz structure for four measurements within subjects is: 
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where:  

σ2 = variance within subjects 
σ1, σ2, σ3 = covariances between measurements within subjects  

 
 
20.2.1 SAS Examples for Heterogeneous Variances and Covariances 

SAS programs for repeated measurement and heterogeneous variances and covariances will 
be shown on the example examining the effects of two treatments on weekly gain of kids. 
Data were collected on a sample of 17 kids, eight and nine animals for treatments one and 
two, respectively. Weekly gain was measured four times in four weeks. The use of 
unstructured, autoregressive and Toeplitz variance-covariance structures will be shown. 
Week will be defined as a categorical variable. 
 
SAS program: 
 
PROC MIXED DATA=reps; 
      CLASS kid treatment week; 
      MODEL gain = treatment week treatment*week / ; 
      REPEATED / TYPE=UN SUB=kid(treatment) ; 
RUN; 

 
Explanation: The MIXED procedure is used. The CLASS statement defines categorical 
variables. The MODEL statement defines the dependent and independent variables. The 
dependent variable is gain, and the independent variables are treatment, week and 
treatment*week interaction. The REPEATED statement defines the variance structure for 
repeated measurements. The subject statement (SUB = kid) defines kid as the variable on 
which repeated measures are taken and the type of structure is defined for an unstructured 
model by TYPE = UN (for autoregressive TYPE = AR(1), and for Toeplitz: 
TYPE = TOEP). An LSMEANS statement could be used to direct calculation of the 
treatment means, but it is not shown here because the aim of this example is to show 
different covariance structures.  
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SAS output for the unstructured model: 
 
          Covariance Parameter Estimates 
 
      Cov Parm    Subject           Estimate 
      UN(1,1)     kid(treatment)     0.01673 
      UN(2,1)     kid(treatment)     0.01851 
      UN(2,2)     kid(treatment)     0.03895 
      UN(3,1)     kid(treatment)     0.01226 
      UN(3,2)     kid(treatment)     0.03137 
      UN(3,3)     kid(treatment)     0.04104 
      UN(4,1)     kid(treatment)     0.00792 
      UN(4,2)     kid(treatment)     0.02325 
      UN(4,3)     kid(treatment)     0.03167 
      UN(4,4)     kid(treatment)     0.03125 
 
                 Fit Statistics 
 
      -2 Res Log Likelihood           -72.2 
      AIC (smaller is better)         -52.2 
      AICC (smaller is better)        -47.7 
      BIC (smaller is better)         -43.9 
 

Explanation: Only the variance-covariance estimates are shown. There are 10 parameters in 
this model. The UN(i, j) denotes covariance between measures i and j. For example, 
UN(1,1) = 0.01673 denotes the variance of measurements taken in period 1, and 
UN(3,1) = 0.01226 denotes the covariance between measures within animals taken in 
periods 1 and 3. The variance-covariance estimates in matrix form are: 
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SAS output for the autoregressive structure: 
 
           Covariance Parameter Estimates 
 

       Cov Parm     Subject           Estimate 
       AR(1)        kid(treatment)      0.7491 
       Residual                        0.02888 
 

                   Fit Statistics 
 

        -2 Res Log Likelihood           -62.4 
        AIC (smaller is better)         -58.4 
        AICC (smaller is better)        -58.2 
        BIC (smaller is better)         -56.7 
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Explanation: Only the variance-covariance estimates are shown. There are two parameters 
in this model. The variance of measures is denoted by Residual. The variance-covariance 
estimates and corresponding correlation matrix are: 
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SAS output for the Toeplitz structure: 
 
           Covariance Parameter Estimates 
 
       Cov Parm     Subject           Estimate 
       TOEP(2)      kid(treatment)     0.02062 
       TOEP(3)      kid(treatment)     0.01127 
       TOEP(4)      kid(treatment)    -0.00015 
       Residual                        0.02849 
 
                   Fit Statistics 
 
        -2 Res Log Likelihood           -64.3 
        AIC (smaller is better)         -56.3 
        AICC (smaller is better)        -55.6 
        BIC (smaller is better)         -53.0 
 

Explanation: Only the variance-covariance estimates are shown. There are four parameters 
in this model. The TOEP(2), TOEP(3) and TOEP(4) denote covariances between measures 
on the same subject (kid) one, two and three periods apart, respectively. The variance of 
measures is denoted by Residual. The variance-covariance structure for one subject is: 
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SAS gives several criteria for evaluating model fit including Akaike information criteria 
(AIC) and Swarz Bayesian information criteria (BIC). The calculation of those is based on 
the log likelihood (or log restricted likelihood) value calculated for the model. It depends on 
method of estimation, number of observations and number of parameters estimated. In SAS 
the better model will have a smaller AIC and BIC value. In the following table the values of 
–2 restricted log likelihood, AIC and BIC for the variance structure models are listed: 
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Model –2 Res Log Likelihood AIC BIC 
Unstructured (UN) –72.2 –52.2 –43.9 
Compound symmetry (CS) –59.9 –55.9 –54.3 
Autoregressive [AR(1)] –62.4 –58.4 –56.7 
Toeplitz (TOEP) –64.3 –56.3 –53.0 

 
These criteria indicate that the best model is the autoregressive model (the value –58.4 is the 
smallest comparing to all the other models). Note that AIC is computed in SAS as –2 times 
residual log likelihood plus twice the number of variance-covariance parameters. For 
example, for the unstructured model AIC = –52.2 = –72.2 + 20, where numbers of 
parameters are 10 and –2 Res likelihood is –72.2. 

20.3 Random Coefficient Regression 

Another approach for analyzing repeated measures when there may be heterogeneous 
variance and covariance is random coefficient regression. The assumption is that each 
subject has its own regression defined over time, thus the regression coefficients are 
assumed to be a random sample from some population. The main advantage of a random 
coefficient regression model is that the time or distance between measures need not be 
equal, and the number of observations per subject can be different. This gives more 
flexibility compared to other variance structure models. For example, using a simple linear 
regression the model is: 

yij = b0i + b1itij + εij i = 1,…, number of subjects  

where: 
yij = dependent variable 
tij = independent variable 
b0i, b1i = regression coefficients with means β0i, β1i, and variance covariance matrix 
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εij = random error  

 
Alternatively, the random coefficient regression model can be expressed as: 

yij = β0 + β1tij + b0i + b1itij + εij  
β0 + β1tij representing the fixed component and b0i + b1itij + εij representing the random 
component. The means of b0i and b1i are zero, and the covariance matrix is: 
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An important characteristic of random coefficient regression is that a covariance function 
can be defined which describes the variance-covariance structure between repeated 
measures in time. The covariance function that describes covariance between measures j 
and j’ on the same subject is: 
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It is possible to estimate the covariance within subject between measures at any two time 
points tj and tj’, and variance between subjects at the time tj. If the common error variance 
within subjects is denoted by σ2, then the variance of an observation taken at time tj is: 

jjttσσ +2   

If measures are taken at the same ages for all subjects, say at ages t1, t2,…,tk, then the 
variance-covariance structure that describes covariance between measures for one subject 
is:  
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For example, variance-covariance structure for four measures per subject taken at times t1, 
t2, t3 and t4 is:  
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Note again that covariance between measures at different times and between different 
subjects is equal to zero. 

More complex models can include different variances and covariances for each 
treatment group for both the between and within subjects. These will be shown using SAS 
examples. 
 
 
20.3.1 SAS Examples for Random Coefficient Regression 

20.3.1.1 Homogeneous Variance-Covariance Parameters across Treatments 

The SAS programs for random coefficient regression will be shown by analysis of the 
example examining the effects of two treatments on weekly gain of kids.  
 
SAS program: 
 
PROC MIXED DATA=reps; 
CLASS kid treatment; 
      MODEL gain = treatment week treatment*week; 
      RANDOM int week / TYPE=UN  SUB = kid(treatment) ; 
RUN; 
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Explanation: The MIXED procedure was used. The CLASS statement defines categorical 
variables. The MODEL statement defines the dependent and independent variables. The 
dependent variable is gain, and independent variables are treatment, week and the 
treatment*week interaction. The RANDOM statement defines the regression coefficients 
(int and week for intercept and slope) as random variables. The variance structure for them 
is unstructured (TYPE = UN), and the subject is SUB = kid(treatment). An LSMEANS 
statement could be used to direct calculation of the treatment means, but it is not shown 
here. 
 
SAS output: 
 
         Covariance Parameter Estimates 
 
     Cov Parm     Subject           Estimate 
 
     UN(1,1)      kid(treatment)    0.234200 
     UN(2,1)      kid(treatment)   -0.023230 
     UN(2,2)      kid(treatment)    0.002499 
     Residual                       0.007235 
 

Explanation: Only the variance-covariance estimates are shown. The covariance matrix of 
regression coefficients is: 
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The variance of measures within animals is: 

007235.0ˆ 2 =σ  

The covariance function between measures on the same animal is: 
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For example, the variance between animals at the age of nine weeks is: 
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The variance of measures at the age of nine weeks is:  
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The covariance between measures at weeks nine and ten within animal is: 
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If measures are taken at the same ages for all animals as is the case here, then the variance-
covariance structure for one animal is:  
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20.3.1.2 Heterogeneous Variance-Covariance Parameters across Treatments 

Between groups heterogeneous Random Coefficient Regressions can be estimated using the 
GROUP option with a RANDOM and/or REPEATED statement. 

Defining different variance-covariance parameters for each treatment and having a 
common error variance, the SAS program is: 
 
PROC MIXED DATA=reps; 
   CLASS kid treatment; 
   MODEL gain = treatment week treatment*week; 
   RANDOM int week / TYPE=UN  SUB = kid(treatment)  GROUP = treatment; 
RUN; 

 
SAS output: 

              Covariance Parameter Estimates 
 

  Cov Parm     Subject           Group          Estimate 
 

  UN(1,1)      kid(treatment)    treatment 1    0.015500 
  UN(2,1)      kid(treatment)    treatment 1   -0.002490 
  UN(2,2)      kid(treatment)    treatment 1    0.000408 
  UN(1,1)      kid(treatment)    treatment 2    0.425500 
  UN(2,1)      kid(treatment)    treatment 2   -0.041380 
  UN(2,2)      kid(treatment)    treatment 2    0.004328 
  Residual                                      0.007235 
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Explanation: There are seven parameters in this model. The UN(i, j) and Group denotes the  
variance-covariance structure of regression coefficients within treatment 1 and 2, 
respectively. There is just one Residual indicating that the model assumes homogeneous 
residual variance across treatments. The covariance matrix of regression coefficients within 
treatment 1 is:  
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The covariance matrix of regression coefficients within treatment 2 is: 









−

−
=













004328.0041380.0
041380.0425500.0

ˆˆ
ˆˆ

2

2

110

100

bbb

bbb

σσ
σσ

 

with a common error variance: 

007235.0ˆ 2 =σ  

The variance-covariance structure for an animal within treatment 1 is: 
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The variance-covariance structure for an animal within treatment 2 is: 
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Defining separate variance-covariance parameters for each treatment and also separate error 
variance for each treatment, the SAS program is: 
 
PROC MIXED DATA=reps; 
   CLASS kid treatment; 
   MODEL gain = treatment week treatment*week; 
   RANDOM int week / TYPE=UN  SUB=kid(treatment)  GROUP = treatment; 
   REPEATED / SUB = kid(treatment)  GROUP = treatment; 
RUN; 

 
SAS output: 
                Covariance Parameter Estimates 
 
    Cov Parm     Subject           Group          Estimate 
    UN(1,1)      kid(treatment)    treatment 1    0.041660 
    UN(2,1)      kid(treatment)    treatment 1   -0.004950 
    UN(2,2)      kid(treatment)    treatment 1    0.000643 
    UN(1,1)      kid(treatment)    treatment 2    0.402300 
    UN(2,1)      kid(treatment)    treatment 2   -0.039190 
    UN(2,2)      kid(treatment)    treatment 2    0.004119 
    Residual     kid(treatment)    treatment 1    0.006063 
    Residual     kid(treatment)    treatment 2    0.008278 
 
                    Fit Statistics 
 
         -2 Res Log Likelihood           -73.0 
         AIC (smaller is better)         -57.0 
         AICC (smaller is better)        -54.4 
         BIC (smaller is better)         -50.4 

 
Explanation: There are eight parameters in this model. The UN(i, j) and Group denote the 
variance-covariance structure of regression coefficients within treatment 1 and 2, 
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respectively. There are also two Residual variances indicating that the model assumes 
heterogeneous residuals between treatments.  
 
The covariance matrix of regression coefficients within treatment 1 is:  
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The covariance matrix of regression coefficients within treatment 2 is: 
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The error variance within treatment 1: 006063.0ˆ 2
1 =σ  

The error variance within treatment 2: 008278.0ˆ 2
2 =σ  

 
The variance-covariance structure for an animal within treatment 1 is: 
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The variance-covariance structure for an animal within treatment 2 is: 
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Chapter 21  
 
Analysis of Numerical Treatment Levels 

In biological research there is often more than one measurement of the dependent variable 
for each level of the independent variable (Figure 21.1). For example, the goal of an 
experiment might be to evaluate the effect of different levels of protein content in a ration 
on daily gain of animals. Protein level is the independent variable, and daily gain is the 
dependent variable. For each level of protein several animals are measured. It may not be 
enough just to determine if there is a significant difference among levels, but it may be of 
interest to find the optimum protein content by fitting a curve over protein level. This 
problem can be approached by using regression or using polynomial orthogonal contrasts. A 
problem with regression is that it may be difficult to conclude which regression model is 
most appropriate. Because of replications for each level of the independent variable it may 
be difficult to determine if simple linear regression is enough to explain the phenomena, or 
if perhaps a quadratic regression is more appropriate. Testing the appropriateness of a 
model can be done by Lack of Fit analysis. Similarly, linear, quadratic and other contrasts 
can be tested in order to make conclusions about linearity or nonlinearity of the phenomena.  
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Figure 21.1  Several measurements per level of independent variable 

21.1 Lack of Fit 

Consider more than one measurement of the dependent variable y on each level of 
independent variable x. Let yij depict the jth measurement in level i of x. There are m levels 

of x, that is, i = 1,2,…,m. The number of measurements for a level i is ni and Σi ni = N is the 
total number of measurements. An example with four levels of x is shown in Figure 21.1. 
From the graph it is difficult to conclude if simple linear regression or quadratic regression 
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is more appropriate for explaining changes in y resulting from changing level of x. Lack of 
Fit analysis provides information to aid in determining which model is more appropriate.  
 
First, assume the model of simple linear regression: 

yij = β0 + β1 xi + εij    

Let iy  denote the mean and iŷ  denote the estimated value for level i. If the model is 
correct, one can expect that iŷ  will not differ significantly from iy .  
Thus, 

if ii yy ˆ≈  (for all i) then the model is correct, 
if ii yy ˆ≠  (for some i) then the model is not correct. 

The test is based on the fact that the residual sum of squares can be partitioned to a ‘pure 
error’ sum of squares and a lack of fit sum of squares: 

SSRES = SSPE + SSLOF 

with appropriate degrees of freedom: 

(n-1) = Σi (ni -1)  +  (m-p) 

where p = the number of parameters in the model. 
 
Sums of squares are: 

( )2ˆ∑ ∑ −=
i j iijRES yySS  

( )2∑∑ −=
i j iijPE yySS  

( )2ˆ∑ −=
i iiiLOF yynSS  

where, 

∑=
j ijni yy

i
1 = mean for level i  

iŷ  = estimated value for level i  

The mean square for pure error is: 

( )∑ −
=

i i

PE
PE n

SSMS
1

 

The expectation of the MSPE is E(MSPE) = σ2, which means that MSPE estimates the variance 
regardless if model is correct or not. The mean square for lack of fit is: 

pm
SSMS LOF

LOF −
=   

If the model is correct then E(MSLOF) = σ2, which means that the mean square for lack of fit 
estimates the variance only if the regression is linear. The null hypothesis states that the 
model is correct, that is, change in x causes linear changes in y: 

H0: E(y) = β0 + β1xi  
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The alternative hypothesis states that linear model is not correct. For testing the hypotheses 
one can apply an F statistic: 

PE

LOF

MS
MSF =  

If the impact of lack of fit is significant, the model of simple linear regression is not correct. 
These results are shown in an ANOVA table: 
 

Source  SS df MS F 
Regression SSREG 1 MSREG = SSREG / 1 F = MSREG / MSRES 
Error SSRES n-2 MSRES = SSRES / (n-2)  
      Lack of fit SSLOF m-2 MSLOF = SSLOF / (m-2) F = MSLOF / SSPE 
      Pure error SSPE n-m MSPE = SSPE / (n-m)  
Total SSTOT n-1   

 
 
Example: The goal of this experiment was to analyze the effect of protein level in a pig 
ration on feed conversion. The experiments started at an approximate weight of 39 kg and 
finished at 60 kg. There were five litters with five pigs randomly chosen from each litter. 
One of the five protein levels (10, 12, 14, 16, and 18%) was randomly assigned to each pig 
from each litter. The following data were obtained: 
 

 Protein level 
Litter 10% 12% 14% 16% 18% 
I 4.61 4.35 4.21 4.02 4.16 
II 4.12 3.84 3.54 3.45 3.28 
III 4.25 3.93 3.47 3.24 3.59 
IV 3.67 3.37 3.19 3.55 3.92 
V 4.01 3.98 3.42 3.34 3.57 

 
In the model, litter was defined as a block, and protein level was defined as a regressor. The 
model is:  

yij = µ + Lj + β1 xi + εij    

where: 
yij = feed conversion of pig i in litter j  
µ = overall mean 
Lj = the effect of litter j  
β1 = regression parameter 
xi = protein level i  
εij = random error 

The number of protein levels is m = 5, the total number of pigs is n = 25, and the number of 
litters (blocks) is b = 5. Results are presented in the following ANOVA table: 
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Source  SS df MS F 
Litter 1.6738 5-1=4 0.4184 9.42 
Regression 0.7565 1 0.7565 11.71 
Error 1.2273 25-(5-1)-2=19 0.0646   
      Lack of fit 0.5169 5-2=3 0.1723  3.88 
      Pure error 0.7105 25-5-(5-1)=16 0.0444  
Total 3.6575 25-1=24   

 
 
The critical value of F0.05,1,19 is 4.38. The calculated F for regression is 11.71. Thus, protein 
level has a significant linear impact on feed conversion. The calculated F for lack of fit is 
3.88, and the critical value of F0.05,3,16 is 3.24. This indicates that linear regression model is 
not adequate in describing the relationship. The change in feed conversion as protein level 
increases is not linear. The next step is to try a quadratic model and test the correctness of fit 
of that model.  
 
 
21.1.1 SAS Example for Lack of Fit 

The example considering the effect of protein level on feed conversion will be used as an 
illustration of Lack of Fit analysis using SAS.  
 

 Protein level 
Litter 10% 12% 14% 16% 18% 
I 4.61 4.35 4.21 4.02 4.16 
II 4.12 3.84 3.54 3.45 3.28 
III 4.25 3.93 3.47 3.24 3.59 
IV 3.67 3.37 3.19 3.55 3.92 
V 4.01 3.98 3.42 3.34 3.57 

 
SAS program: 
 
DATA a; 
INPUT litter $ prot conv @@; 
prot1=prot; 
DATALINES; 
  I 10 4.61    I 12 4.35    I 14 4.21    I 16 4.02    I  18  4.16 
 II 10 4.12   II 12 3.84   II 14 3.54   II 16 3.45   II  18  3.28 
III 10 4.25  III 12 3.93  III 14 3.47  III 16 3.24  III  18  3.59 
 IV 10 3.67   IV 12 3.37   IV 14 3.19   IV 16 3.55   IV  18  3.92 
  V 10 4.01    V 12 3.98    V 14 3.42    V 16 3.34    V  18  3.57 
; 
*the following procedure computes lack of fit for linear regression; 
PROC GLM; 
CLASS litter prot; 
MODEL conv = litter prot1 prot /SS1; 
RUN; 
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*the following procedure computes lack of fit for quadratic regression; 
PROC GLM; 
CLASS litter prot; 
MODEL conv = litter prot1 prot1*prot1 prot / SS1; 
RUN; 

 
Explanation: The first procedure tests if a linear regression model adequately describes the 
relationship between protein level and feed conversion. The CLASS statement defines class 
(categorical) independent variables. The MODEL statement conv = litter prot1 prot defines 
conv  as the dependent variable, and litter, prot and prot1 as independent variables. The 
variables prot1 and prot are numerically identical (See DATA step), but the program treats 
them differently. The variable prot1 is not in the CLASS statement and the program uses it 
as a continuous (regressor) variable. Defining the same variable as both class and 
continuous gives a proper lack of fit testing. The SS1 option computes sequential sums of 
squares. The second GLM procedure tests if the quadratic model adequately describes the 
relationship. Here, the MODEL statement conv = litter prot1 prot1*prot1 prot /ss1, defines 
effects in the model. The variable prot1*prot1 defines a quadratic effect of protein level.  
 
SAS output: 
 
Dependent Variable: conv 
 
                           Sum of 
Source            DF      Squares    Mean Square   F Value   Pr > F 
Model              8   2.94708800     0.36838600      8.30   0.0002 
Error             16   0.71045600     0.04440350 
Corrected Total   24   3.65754400 
 
Source            DF    Type I SS    Mean Square   F Value   Pr > F 
litter             4   1.67378400     0.41844600      9.42   0.0004 
prot1              1   0.75645000     0.75645000     17.04   0.0008 
prot               3   0.51685400     0.17228467      3.88   0.0293 
 
 
Dependent Variable: conv 
 
                       Sum of 
Source            DF   Squares    Mean Square   F Value   Pr > F 
Model              8   2.947088   0.36838600      8.30   0.0002 
Error             16   0.710456   0.04440350 
Corrected Total   24   3.657544 
 
Source            DF   Type I SS   Mean Square   F Value   Pr > F 
litter             4   1.673784    0.41844600      9.42   0.0004 
prot1              1   0.756450    0.75645000     17.04   0.0008 
prot1*prot1        1   0.452813    0.45281286     10.20   0.0057 
prot               2   0.064041    0.03202057      0.72   0.5013 
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Explanation: The first GLM procedure tests to determine if linear regression is adequate. 
The first table is the ANOVA table for conv as a Dependent Variable. The Source(s) of 
variability are Model, Error and Corrected Total. In the table are presented degrees of 
freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P value (Pr > F). 
In the next table the sum of squares for MODEL from the first table is partitioned to litter, 
prot1 and prot. Here, the variable prot defined as a class variable depicts the effect of lack 
of fit. The calculated F and P values are 3.88 and 0.0293, respectively. Thus, the effect of 
lack of fit is significant. That means that the model of linear regression does not adequately 
describe the relationship. The check if the quadratic model is correct is shown by the second 
GLM procedure. Analogously to the first procedure, the effect prot in the very last table 
depicts the lack of fit effect. That effect not being significant (P value is 0.5013) indicates 
that the quadratic regression is appropriate in describing the effect of protein level on feed 
conversion. 

21.2 Polynomial Orthogonal Contrasts 

The analysis of treatment levels and testing of linear, quadratic, and higher order effects can 
be done by using polynomial orthogonal contrasts. The treatment sum of squares can be 
partitioned into orthogonal polynomial contrasts, and each tested by F test. In the following 
table the contrast coefficients are shown for two to five treatment levels: 
 

No. of 
treatment 
levels 

Degree of 
polynom Coefficient (c) Σi ci

2 

2 linear -1  +1 2 

3 linear 
quadratic 

-1   0  +1 
+1  -2  +1 

2 
6 

4 
linear 
quadratic 
cubic 

-3  -1  +1  +3 
+1  -1  -1  +1 
-1  +3  -3  +1 

20 
4 
20 

5 

linear  
quadratic 
cubic 
quartic 

-2  -1   0  +1  +2 
+2  -1  -2  -1  +2 
-1  +2   0  -2  +1 
+1  -4  +6  -4  +1 

10 
14 
10 
70 

 
For example, if a model has three treatment levels, the treatment sum of squares can be 
partitioned into two orthogonal polynomial contrasts: linear and quadratic. These two 
contrasts explain linear and quadratic effects of the independent variable (treatments) on the 
dependent variable. The quadratic component is equivalent to lack of fit sum of squares for 
linearity. The significance of each of the components can be tested with an F test. Each F 
value is a ratio of contrast mean square and error mean square. The null hypothesis is that 
the particular regression coefficient is equal to zero. If only the linear effect is significant, 
we can conclude that the changes in values of the dependent variable are linear with respect 
to the independent variable. If the quadratic component is significant, we can conclude that 
the changes are not linear but parabolic. Using similar reasoning polynomials of higher 
degree can also be tested. 
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Example: Using the example of the effects of different protein levels on feed conversion, 
recall that litters were used as blocks in a randomized block design. Since five protein levels 
were defined, the treatment sum of squares can be partitioned into four polynomial 
orthogonal contrasts. Recall the data: 
 

 Protein level 
Litter 10% 12% 14% 16% 18% 
I 4.61 4.35 4.21 4.02 4.16 
II 4.12 3.84 3.54 3.45 3.28 
III 4.25 3.93 3.47 3.24 3.59 
IV 3.67 3.37 3.19 3.55 3.92 
V 4.01 3.98 3.42 3.34 3.57 

 
ANOVA table: 
 

Source  SS df MS F 
Litter 1.6738 4 0.4184 9.42 
Protein level 1.2733 4 0.3183 7.17 
      Linear contrast 0.7565 1 0.7565 17.04 
      Quadratic contrast 0.4528 1 0.4528 10.25 
      Cubic contrast 0.0512 1 0.0512 1.15 
      Quartic contrast 0.0128 1 0.0128 0.29 
Error 0.7105 16 0.0444  
Total 3.6575 24   

 
The effect of level of protein is significant. Further, the linear and quadratic contrasts are 
significant, but the others are not. This leads to the conclusion that changes in feed 
conversion can be explained by a quadratic regression on protein levels. Notice that the 
treatment sum of squares is equal to the sum of contrasts sums of squares: 

1.2733 = 0.7565+0.4528+0.0512+0.0128. 

In addition, the error term here is equal to the pure error from the lack of fit analysis. The 
coefficients of the quadratic function are estimated by quadratic regression of feed 
conversion on protein levels. The following function results:  

y = 8.4043 -0.6245x + 0.0201x2  

The  protein level for minimum feed conversion is determined by taking the first derivative 
of the quadratic function, setting it to zero, and solving. The solution of that equation is an 
optimum. 
 
The first derivative of y is:  

y’ = -0.6245 + 2(0.0201)x = 0 

Then x = 15.5, and the optimum level of protein is 15.5%. 
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21.2.1 SAS Example for Polynomial Contrasts 

The SAS program for calculation of polynomial contrasts for the example with feed 
conversion is: 
 
SAS program: 
 
DATA a; 
INPUT litter $ prot conv @@; 
DATALINES; 
  I 10 4.61    I 12 4.35    I 14 4.21    I 16 4.02    I  18  4.16 
 II 10 4.12   II 12 3.84   II 14 3.54   II 16 3.45   II  18  3.28 
III 10 4.25  III 12 3.93  III 14 3.47  III 16 3.24  III  18  3.59 
 IV 10 3.67   IV 12 3.37   IV 14 3.19   IV 16 3.55   IV  18  3.92 
  V 10 4.01    V 12 3.98    V 14 3.42    V 16 3.34    V  18  3.57 
; 
*the following procedure computes the contrasts; 
PROC GLM; 
CLASS litter prot; 
MODEL conv = litter prot; 
CONTRAST 'linear' prot -2  -1   0  +1  +2; 
CONTRAST 'quad'  prot +2  -1  -2  -1  +2; 
CONTRAST 'cub'    prot -1  +2   0  -2  +1; 
CONTRAST 'quart' prot +1  -4  +6  -4  +1; 
LSMEANS prot / stderr; 
RUN; 
 
*the following procedure computes regression coefficients; 
PROC GLM; 
MODEL conv= prot prot*prot /SOLUTION; 
RUN; 

 
Explanation: The first GLM procedure tests the significance of litters and protein. The 
CLASS statement defines class (categorical) variables. The statement, MODEL 
conv = litter prot, denotes that conv is the dependent variable, and litter and prot are 
independent variables. The CONTRAST statement defines contrasts. For each contrast there 
is a distinctive CONTRAST statement. Words between quotation marks, i.e. 'lin', 'quad', 
'cub' and 'quart', label contrasts as they will be shown in the output. The word prot specifies 
the variable for which the contrast is calculated, followed by the contrast coefficients. The 
second GLM procedure estimates the quadratic regression.  
 
SAS output: 
 
Dependent Variable: conv 
 
                          Sum of 
Source           DF      Squares   Mean Square   F Value   Pr > F 
Model             8   2.94708800    0.36838600      8.30   0.0002 
Error            16   0.71045600    0.04440350 
Corrected Total  24   3.65754400 
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Source           DF  Type III SS   Mean Square   F Value   Pr > F 
litter            4   1.67378400    0.41844600      9.42   0.0004 
prot              4   1.27330400    0.31832600      7.17   0.0017 
 
Contrast         DF  Contrast SS   Mean Square   F Value   Pr > F 
linear            1   0.75645000    0.75645000     17.04   0.0008 
quad              1   0.45281286    0.45281286     10.20   0.0057 
cub               1   0.05120000    0.05120000      1.15   0.2988 
quart             1   0.01284114    0.01284114      0.29   0.5981 
 
                     Least Squares Means 
 
                                   Standard 
       prot     conv LSMEAN           Error    Pr > |t| 
 
       10        4.13200000      0.09423747      <.0001 
       12        3.89400000      0.09423747      <.0001 
       14        3.56600000      0.09423747      <.0001 
       16        3.52000000      0.09423747      <.0001 
       18        3.70400000      0.09423747      <.0001 
 
                               The GLM Procedure 
 
Dependent Variable: conv 
 
                          Sum of 
Source           DF      Squares   Mean Square   F Value   Pr > F 
Model             2   1.20926286    0.60463143      5.43   0.0121 
Error            22   2.44828114    0.11128551 
Corrected Total  24   3.65754400 
 
Source           DF    Type I SS   Mean Square   F Value   Pr > F 
prot1             1   0.75645000    0.75645000      6.80   0.0161 
prot1*prot1       1   0.45281286    0.45281286      4.07   0.0560 
 
                               Standard 
 Parameter       Estimate         Error    t Value    Pr > |t| 
 Intercept    8.404342857    1.90403882       4.41      0.0002 
 prot1       -0.624500000    0.28010049      -2.23      0.0363 
 prot1*prot1  0.020107143    0.00996805       2.02      0.0560 
 

Explanation: The first table is an ANOVA table for the Dependent Variable conv. The 
Sources of variability are Model, Error and Corrected Total. In the table are shown degrees 
of freedom (DF), Sum of Squares, Mean Square, calculated F (F value) and P values (Pr > 
F). In the next table the explained source of variability (MODEL) is partitioned into litter 
and prot. For prot the calculated F and P values are 7.17 and 0.0017, respectively. There 
exists an effect of protein level. Next, the contrasts are shown. Both the linear and quad 
contrasts are significant. The last table of the first GLM procedure shows the least squares 
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means (conv LSMEANS) together with Standard Errors. The second GLM procedure 
estimates quadratic regression coefficients. An ANOVA table and the parameter estimates 
are shown. Thus, the quadratic function is:  

Conversion = 8.40434 - 0.6245 (protein) + 0.0201 (protein2). 
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Chapter 22  
 
Discrete Dependent Variables 

Up to now we have emphasized analysis of continuous dependent variables; however, 
dependent variables can be discrete or categorical as well. For example, the effect of 
different housing systems on calf survival with survival coded as living = 1 or dead = 0. 
Another example is an experiment in which the objective is to test the effect of a treatment 
on botanical content of pastures. The dependent variable can be defined as the number of 
plants per unit area, and is often called a count variable. In these examples, the dependent 
variables are not continuous, and classical regression or analysis of variance may not be 
appropriate because assumptions such as homogeneity of variance and linearity are often 
not satisfied. Further, these variables do not have normal distributions and F or t tests are 
not valid. In chapter six an analysis of proportions using the normal approximation and a 
test of difference between an observed and theoretical frequency were shown using a chi-
square test. In this chapter generalized linear models will be shown for analysis of binary 
and other discrete dependent variables.  

Generalized linear models are models in which independent variables explain a 
function of the mean of a dependent variable. This is in contrast to classical linear models in 
which the independent variables explain the dependent variable or its mean directly. Which 
function is applicable depends on the distribution of the dependent variable.  

To introduce a generalized linear model, denote µ = E(y) as the expectation or mean of 
a dependent variable y, and xβ as a linear combination of the vector of independent 
variables x and the corresponding vector of parameters β. For example for two independent 
continuous variables x1 and x2: 
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 = β0 + β1x1 + β1x2  

The generalized linear model in matrix notation is:  

η = g(µ) = xβ 

where η = g(µ) is a function of the mean of the dependent variable known as a link 
function. It follows that the mean is: 

µ = g-1(η) 
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where g-1 = an inverse 'link' function, that is, a function that transforms xβ back to the mean. 
Observations of variable y can be expressed as: 

y = µ + ε 

where ε is an error that can have a distribution other than normal. If the independent 
variables are fixed, it is assumed that the error variance is equal to the variance of the 
dependent variable, that is: 

Var(y) = Var(ε) 

The model can also account for heterogeneity of variance by defining the variance to 
depend on the mean. The variance can be expressed as:  

Var(y) = V(µ)φ2  

where V(µ) is a function of the mean that contributes to the Var(y), V(µ) is called the 
variance function, and φ2 is a dispersion parameter.  
 
 
Example: For a normal distribution with mean µ, variance σ2, and a link function 
η = g(µ) = 1; the variance function V(µ) = 1, and the dispersion parameter φ2 = σ2.  
 

22.1 Logit Models, Logistic Regression 

The influence of independent variables on a binary dependent variable can be explained 
using a generalized linear model and a logit link function. These models are often called 
logit models. Recall that a binary variable can have only two outcomes, for example Yes 
and No, or 0 and 1. The probability distribution of the binary variable y has the Bernoulli 
distribution: 

yyqpyp −= 1)(  y = 0,1  

The probabilities of outcomes are: 

P(yi = 1) = p 
P(yi = 0) = q = 1-p  

The expectation and variance of the binary variable are: 

E(y) = µ = p          and         Var(y) = σ2 = pq 

The binomial distribution is a distribution of y successes from a total of n trials:  

ynyqp
y
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yp −
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
=)(  y = 0,1,2,....,n 

where p = the probability of success in a single trial, and q = 1-p = the probability of failure. 
 
The expectation and variance of a binomial variable are: 

E(y) = µ = np           and         Var(y) = σ2 = npq 



396  Biostatistics for Animal Science 

 

For n = 1, a binomial variable is identical to a binary variable.  
 
 It is often more practical  to express data as binomial proportions. A binomial proportion is 
the value of a binomial variable y divided by the total number of trials n. The mean and 
variance of  binomial proportions are: 

E(y/n) = µ = p         and         Var(y/n) = σ2 = pq/n 

Knowing that the mean is µ = p, the model that explains changes in the mean of a binary 
variable or in the binomial proportion is: 

ηi = g(µi) = g(pi) = xiβ 

As a link function a logit function, g, can be used: 

ηi = logit(pi) = log[pi /(1-pi)]  

An inverse link function that transforms the logit value back to a proportion is the logistic 
function: 

i

i

e
epi η

η

+
=

1
 

A model which uses logit and logistic functions is called logit or logistic model. When 
independent variables are continuous, the corresponding model is a logistic regression 
model.  

ηi = log[pi /(1-pi)] = β0 + β1x1i + β2x2i + ... + βp-1x(p-1)i  

where:  
x1i, x2i,..., x(p-1)i = independent variables 
β0 , β1 , β2 ,..., βp-1 = regression parameters 

A simple logistic regression is a logistic regression with only one independent continuous 
variable: 

ηi = log[pi /(1-pi)] = β0 + β1xi 

Independent variables can also be categorical. For example,  a one-way logit model can be 
defined as follows: 

ηi = log[pi /(1-pi)] = m + τi 

where: 
m = the overall mean of the proportion on the logarithmic scale 
τi = the effect of group i 

Defining the logit function assures that estimates or predicted values of the dependent 
variable are always between 0 and 1. Errors in the model have a Bernoulli distribution or a 
binomial distribution divided by n. A variance function is also defined:  

V(µ) = V(p) = pq = p (1-p) 

where q = 1 - p 
 
Thus, the variance of binomial proportions y/n is: 

21 )(/)/( φpVnpqnyVar n==  
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The variance function V(p) must be divided by n because a proportion is a binomial variable 
divided by n. It follows that the dispersion parameter is:  

φ2= 1 

A property of logistic regression is that the variance of y/n is a function of p. The model 
takes into account variance heterogeneity by defining a variance function. The mean and 
variance depend on the parameter p. Thus, if the independent variables influence the 
parameter p, they will also influence the mean and variance. 
 
 
22.1.1 Testing Hypotheses 

Recall that for a linear regression the expression:  

2
__2

σ̂
χ FULLRESREDUCEDRES SSSS −

=  

is utilized to test if particular parameters are needed in a model (section 9.3). Here, SSRES are 
residual sums of squares. That expression is equal to:  

[ ])_()_(2
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)_(22 modelfullLlogmodelreducedLlog
full_modelL

modelreducedLlog +−=−=χ  

where L and logL are values of the likelihood function and log likelihood function. This 
expression has a chi-square distribution with degrees of freedom equal to the difference in 
numbers of parameters.  
 
The same holds for generalized linear models. A measure of deviation between the 
estimated and observed values for generalized linear models is called the deviance. The 
deviance is analogous to the SSRES for linear models, that is, deviance for linear models is 
SSRES. For the logistic model the deviance is: 
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 i = 1,…, number of observations  

where: 

yi = number of successes from a total of ni trials for observation i 
ip̂  = the estimated probability of success for observation i  

The difference between the full and reduced model deviances is distributed with an 
approximate chi-square distribution with degrees of freedom equal to the difference in 
numbers of parameters.  
 
 
Example: Consider a simple logistic model to explain changes in a binomial proportion p 
due to changes in an independent variable x: 

log[pi /(1-pi)] = β0 + β1xi  
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The null hypothesis is: 

H0: β1 = 0 

The reduced model is:  

log[pi /(1-pi)] = β0  

Let ( )xD 10
ˆˆ ββ +  denote a deviance for the full model, and ( )0β̂D  a deviance for the 

reduced model. For large samples the difference: 

( ) ( )xDD 100
2 ˆˆˆ βββχ +−=  

has an approximate chi-square distribution with (2-1) = 1 degree of freedom. If the 
calculated difference is greater than the critical value χ 2α, H0 is rejected.  
 
 
Sometimes binomial proportion data show variance that differs from the theoretical variance 
pq/n. In that case the dispersion parameter φ2 differs from one and usually is denoted the 
extra-dispersion parameter. The variance is: 

( ) 212 )(/)/( φµφ VnpqnyVar n==  

The parameter φ2 can be estimated from the data with the deviance (D) divided by the 
degrees of freedom (df):  

df
D

=2φ̂  

The degrees of freedom are defined similarly as for computing the residual mean square in a 
linear model. For example in regression they are equal to the number of observations minus 
the number of regression parameters. The value φ2 = 1 indicates that the variance is 
consistent with the assumed distribution, φ2 < 1 indicates under-dispersion, and φ2 > 1 
indicates over-dispersion from the assumed distribution. If the extra-dispersion parameter φ2 
is different than 1, the test must be adjusted by dividing the deviances by φ2/n. The estimates 
do not depend on the parameter φ2 and they need not be adjusted.  
 
 
Example: Is there an effect of age at first calving on incidence of mastitis in cows? On a 
sample of 21 cows the presence of mastitis and age at first calving (in months) were 
recorded: 
 

Age 19 20 20 20 21 21 21 22 22 22 23
Mastitis 1 1 0 1 0 1 1 1 1 0 1 
Age 26 27 27 27 27 29 30 30 31 32  
Mastitis 1 0 1 0 0 1 0 0 0 0  

 
A logit model was assumed: 

log[pi /(1-pi)] = β0 + β1xi  
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where: 
pi = the proportion with mastitis for observation i  
xi = age at first calving for observation i  
β0, β1 = regression parameters 

The following estimates were obtained: 

7439.6ˆ
0 =β 2701.01̂ −=β  

The deviances for the full and reduced models are: 

( ) 8416.23ˆˆ
10 =+ xD ββ   

( ) 0645.29ˆ
0 =βD  

( ) ( ) 2229.5ˆˆˆ
100

2 =+−= xDD βββχ  

The critical value is χ2
0.05,1 = 3.841. Since the calculated difference is greater than the 

critical value, H0 is rejected, and we can conclude that age at first calving influences 
incidence of mastitis. 

The estimated curve can be seen in Figure 22.1. To estimate the proportion for a 
particular age xi, a logistic function is used. For example, the estimate for the age xi = 22 is: 
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Figure 22.1  Logistic curve of changes in proportion with mastitis as affected by changes 
in age at first calving 

Logistic regression is also applicable when the independent variables are categorical. Recall 
that the effects of categorical variables can be analyzed through a regression model by 
assigning codes, usually 0 and 1, to the observations of a particular group or treatment. The 
code 1 denotes that the observation belongs to the group, 0 denotes that it does not belong 
to the group. 
 
 



400  Biostatistics for Animal Science 

 

Example: Are the proportions of cows with mastitis significantly different among three 
farms? The total number of cows and the number of cows with mastitis are shown in the 
following table:  
 

Farm Total no. of 
cows 

No. of cows with 
mastitis 

A 96 36 
B 132 29 
C 72 10 

 
The model is: 

ηi = log[pi /(1-pi)] = m + τi i = A, B, C 

where: 
pi = the proportion with mastitis on farm i 
m = the overall mean of the proportion on the logarithmic scale 
τi = the effect of farm i 

 
As shown for linear models with categorical independent variables, there are no unique 
solutions for m̂  and the iτ̂ . For example, one set of the solutions is obtained by setting one 
of the iτ̂  to zero: 

8245.1ˆ −=m  
3137.1ˆ =Aτ  
5571.0ˆ =Bτ  
000.0ˆ =Cτ  

The estimate of the proportion for farm A is: 
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The estimate of the proportion for farm B is: 
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The estimate of the proportion for farm C is: 
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The deviances for the full and reduced models are: 

( ) 0ˆˆ =+ imD τ   
( ) 3550.13ˆ =mD  

The value of chi-square statistic is: 

( ) ( ) 3550.13ˆˆˆ2 =+−= imDmD τχ  
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For (3-1) = 2 degrees of freedom, the critical value χ2
0.05 = 5.991. The difference in 

incidence of mastitis among the three farms is significant at the 5% level.  
 
 
Another approach to solving this example is to define an equivalent model in the form of a 
logistic regression: 

log[pi /(1-pi)] = β0 + β1x1i + β2x2i  

where: 
pi = the proportion with mastitis on farm i 
x1i = an independent variable with the values 1 if an observation is on farm A or 0 if 
an observation is not on farm A 
x2i = an independent variable with the values 1 if an observation is on farm B or 0 if 
an observation is not on farm B  
β0, β1, β2 = regression parameters 

The following parameter estimates were obtained: 
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The estimate of the incidence of mastitis for farm A is: 
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The estimate of the incidence of mastitis for  farm B is: 
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The estimate of the incidence of mastitis for farm C is: 
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The deviance for the full model is equal to zero because the data are completely described 
by the model: 

( ) 0ˆˆˆ
22110 =++ xxD βββ   

The deviance for the reduced model is: 

( ) 3550.13ˆ
0 =βD  

The difference between deviances is: 

( ) ( ) 3550.13ˆˆˆˆ
221100

2 =++−= xxDD ββββχ  
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The critical value for (3-1) = 2 degrees of freedom is χ2
0.05 = 5.991. The calculated χ2 is  

greater than the critical value and the differences between farms are significant. Note the 
same estimates and calculated χ2 value were obtained when analyzed as a one-way model 
with a categorical independent variable. 
 
 
22.1.2 SAS Examples for Logistic Models 

The SAS program for the example examining the effect of age on incidence of mastitis is 
the following. Recall the data: 
 

Age 19 20 20 20 21 21 21 22 22 22 23
Mastitis 1 1 0 1 0 1 1 1 1 0 1 
Age 26 27 27 27 27 29 30 30 31 32  
Mastitis 1 0 1 0 0 1 0 0 0 0  

 
SAS program: 
 
DATA a; 
INPUT age mastitis @@;  
DATALINES; 
19 1   20 1   20 0   20 1   21 0   21 1   21 1 
22 1   22 1   22 0   23 1   26 1   27 0   27 1 
27 0   27 0   29 1   30 0   30 0   31 0   32 0 
; 
PROC GENMOD DATA=a; 
      MODEL mastitis = age / DIST = BIN 
                           LINK = LOGIT 
                           TYPE1 
                           TYPE3; 

RUN; 
 
Explanation: The GENMOD procedure  is used. The statement, MODEL mastitis = age 
defines the dependent variable mastitis and the independent variable age. The options DIST 
= BIN defines a binomial distribution, and LINK = LOGIT denotes that the model is a logit 
model, that is, the ‘link’ function is a logit. The TYPE1 and TYPE3 commands direct 
calculation of sequential and partial tests using the deviances for the full and reduced 
models.  
 
SAS output: 
               Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
Deviance                  19         23.8416          1.2548 
Scaled Deviance           19         23.8416          1.2548 
Pearson Chi-Square        19         20.4851          1.0782 
Scaled Pearson X2         19         20.4851          1.0782 
Log Likelihood                      -11.9208 
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                  Analysis Of Parameter Estimates 
 
                        Standard       Wald 95%      Chi- 
Parameter  DF  Estimate  Error  Confidence Limits  Square  Pr>ChiSq 
Intercept  1   6.7439   3.2640   0.3466  13.1412    4.27    0.0388 
age        1  -0.2701   0.1315  -0.5278  -0.0124    4.22    0.0399 
Scale      0   1.0000   0.0000   1.0000   1.0000 
 
NOTE: The scale parameter was held fixed. 
 
              LR Statistics For Type 1 Analysis 
 
       Source       Deviance    DF   ChiSquare  Pr>Chi 
       INTERCEPT     29.0645     0           .       . 
       AGE           23.8416     1      5.2230  0.0223 
 
              LR Statistics For Type 3 Analysis 
 
                                   Chi- 
         Source           DF     Square    Pr > ChiSq 
         age               1       5.22        0.0223 
 

Explanation: The first table shows measures of the correctness of the model. Several criteria 
are shown (Criterion), along with the degrees of freedom (DF), a Value and the value 
divided by degrees of freedom (Value/DF). The Deviance is 23.8416. The extra-dispersion 
parameter (Scale) is 1, and thus the Scaled Deviance is equal to the Deviance. The Pearson 
Chi-square and Log likelihood are also shown. The next table presents the parameter 
estimates (Analysis of Parameter Estimates). The parameter estimates are b0 = 6.7439 and 
b1 = -0.2701. Below the table is a note that the extra-dispersion parameter (Scale) is held 
fixed (=1) for every value of the x variable (NOTE: The scale parameter was held fixed). At 
the end of the output the Type1 and Type3 tests of significance of regression  are shown: 
Source of variability, Deviance, degrees of freedom (DF), ChiSquare and P value (Pr>Chi). 
The deviance for β0 (INTERCEPT), that is for the reduced model, is 29.0645. The deviance 
for β1 (AGE), that is for the full model, is 23.8416. The ChiSquare value (5.2230) is  the 
difference between the deviances. Since the P value = 0.0223, H0 is rejected, indicating an 
effect of age on development of mastitis. 
 
The GENMOD procedure can also be used to analyze the data expressed as proportions. 
The SAS program is:  
 
DATA a; 
INPUT age mastitis n @@;  
DATALINES; 
19 1 1  20 2 3  21 2 3 
22 2 3  23 1 1  26 1 1 
27 1 4  29 1 1  30 0 2 
31 0 1  32 0 1 
; 
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PROC GENMOD DATA=a; 
      MODEL mastitis/n = age / DIST = BIN 
                           LINK = LOGIT 
                           TYPE1 
                           TYPE3 
                           PREDICTED; 
RUN; 

 
Explanation: The variables defined with the statement INPUT are age, the number of cows 
with mastitis for the particular age (mastitis), and the total number of cows for the particular 
age (n). In the MODEL statement, the dependent variable is expressed as a proportion 
mastitis/n. The options are as before with the addition of the PREDICTED option, which 
produces output of the estimated proportions for each observed age as follows: 
 
                       Observation Statistics 
 
Obs  mastitis   n       Pred      Xbeta        Std    HessWgt 
 
 1      1       1    0.8337473   1.6124213  0.8824404   0.1386127 
 2      2       3    0.7928749   1.3423427  0.7775911   0.4926728 
 3      2       3    0.7450272   1.0722641  0.6820283   0.569885 
 4      2       3    0.6904418   0.8021854  0.6002043   0.6411958 
 5      1       1    0.6299744   0.5321068  0.5384196   0.2331067 
 6      1       1    0.4309125  -0.278129   0.535027    0.2452269 
 7      1       4    0.3662803  -0.548208   0.5951266   0.9284762 
 8      1       1    0.2519263  -1.088365   0.770534    0.1884594 
 9      0       2    0.2044934  -1.358444   0.8748417   0.3253516 
10      0       1    0.1640329  -1.628522   0.9856678   0.1371261 
11      0       1    0.1302669  -1.898601   1.1010459   0.1132974 

 
The table Observation Statistics for each age shows the predicted proportions (Pred), 
estimate of age ˆˆ

00 ββ +  (Xbeta), standard error (Std), and diagonal element of the weight 
matrix used in computing the Hessian matrix (matrix of the second derivatives of the 
likelihood function), which is needed for iterative estimation of parameters (HessWgt). 
 
 
The SAS program for the example examining differences in the incidence of mastitis in 
cows on three farms, which uses a logit model with categorical independent variables, is as 
follows. Recall the data:  
 

Farm Total no. of 
cows 

No. of cows with 
mastitis 

A 96 36 
B 132 29 
C 72 10 
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SAS program: 
 
DATA a; 
INPUT n y farm $; 
DATALINES; 
 96  36  A 
132  29  B 
 72  10  C 
; 
PROC GENMOD DATA=a; 
      CLASS farm; 
      MODEL y/n = farm / DIST = BIN 
                           LINK = LOGIT 
                          TYPE1 
                          TYPE3 
                          PREDICTED; 
     LSMEANS farm /DIFF CL; 
   RUN; 

 
Explanation: The GENMOD procedure  is used. The CLASS statement defines farm as a 
classification variable. The statement, MODEL y/n = farm, defines the dependent variable 
as a binomial proportion, with y = the number of cows with mastitis and n = the total 
number of cows on the particular farm. The independent variable is farm. The DIST = BIN 
option defines a binomial distribution, and LINK = LOGIT denotes a logit model. The 
TYPE1 and TYPE3 direct calculation of sequential and partial tests using deviances for the 
full and reduced models. The PREDICTED option produces output including predicted 
proportions for each farm. The LSMEANS statement gives the parameter estimates for each 
farm. 
 
SAS output: 
 
                    Criteria For Assessing Goodness Of Fit 
 
         Criterion              DF        Value        Value/DF 
         Deviance                0       0.0000           . 
         Scaled Deviance         0       0.0000           . 
         Pearson Chi-Square      0       0.0000           . 
         Scaled Pearson X2       0       0.0000           . 
         Log Likelihood               -162.0230 
 
                       Analysis Of Parameter Estimates 
 
                        Standard       Wald 95%      Chi- 
Parameter  DF  Estimate  Error  Confidence Limits  Square  Pr>ChiSq 
 
Intercept  1   -1.8245  0.3408   -2.4925  -1.1566   28.67  <.0001 
farm  A    1    1.3137  0.4007    0.5283   2.0991   10.75  0.0010 
farm  B    1    0.5571  0.4004   -0.2277   1.3419    1.94  0.1641 
farm  C    0    0.0000  0.0000    0.0000   0.0000     .       . 
Scale      0    1.0000  0.0000    1.0000   1.0000 
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NOTE: The scale parameter was held fixed. 
 
                      LR Statistics For Type 1 Analysis 
 
                                        Chi- 
Source         Deviance        DF     Square    Pr > ChiSq 
Intercept       13.3550 
farm             0.0000         2      13.36        0.0013 
 
                      LR Statistics For Type 3 Analysis 
 
                                           Chi- 
                 Source           DF     Square    Pr > ChiSq 
                 farm              2      13.36        0.0013 
 
                           Least Squares Means 
 
                          Standard      Chi- 
Effect  farm  Estimate     Error   DF  Square  Pr > ChiSq   Alpha 
farm     A    -0.5108    0.2108    1    5.87      0.0154    0.05 
farm     B    -1.2674    0.2102    1   36.35      <.0001    0.05 
farm     C    -1.8245    0.3408    1   28.67      <.0001    0.05 
 
              Least Squares Means 
 
      Effect    farm    Confidence Limits 
      farm      A      -0.9240     -0.0976 
      farm      B      -1.6795     -0.8554 
      farm      C      -2.4925     -1.1566 
 
 
                     Differences of Least Squares Means 
 
                               Standard      Chi- 
Effect  farm  _farm  Estimate   Error   DF  Square  Pr > ChiSq   
Alpha 
 
farm    A     B       0.7566    0.2977   1   6.46   0.0110    0.05 
farm    A     C       1.3137    0.4007   1  10.75   0.0010    0.05 
farm    B     C       0.5571    0.4004   1   1.94   0.1641    0.05 
 
                     Differences of Least Squares Means 
 
                  Effect  farm  _farm    Confidence Limits 
 
                  farm    A     B        0.1731      1.3401 
                  farm    A     C        0.5283      2.0991 
                  farm    B     C       -0.2277      1.3419 
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                            Observation Statistics 
 
Observation    y    n       Pred      Xbeta        Std    HessWgt 
 
      1       36   96      0.375  -0.510826  0.2108185       22.5 
      2       29  132   0.219697  -1.267433  0.2102177  22.628788 
      3       10   72  0.1388889  -1.824549  0.3407771  8.6111111 

 
 
Explanation: The first table presents statistics describing the correctness of the model. 
Several criteria are shown (Criterion), along with degrees of freedom (DF), Value and value 
divided by degrees of freedom (Value/DF). The Deviance = 0, since the model exactly 
describes the data (a saturated model). The next table presents parameter estimates (Analysis 
Of Parameter Estimates). For a model with categorical independent variables SAS defines 
an equivalent regression model. The estimates for Intercept, farm A, farm B, and farm C are 
equivalent to the solution from the one-way model when the estimate of farm C is set to 
zero. Thus, the parameter estimates are 8245.1ˆ

0 −=β  (Intercept), 3137.1ˆ
1 =β  (farm A), 

and 5571.0ˆ
2 =β  (farm B) for the regression model log[pi /(1-pi)] = β0 + β1x1i + β2x2i or 

analogously 8245.1ˆ −=m  (Intercept), 3137.1ˆ =Aτ  (farm A), 5571.0ˆ =Bτ  (farm B), and 
000.0ˆ =Cτ  (farm C) for the one-way model log[pi /(1-pi)] = m + τi (See example in section 

22.1.1 for model definition). The extra-dispersion parameter (Scale) is taken to be 1, and the 
Scaled Deviance is equal to Deviance. (NOTE: The scale parameter was held fixed.). Next, 
the Type1 and Type3 tests of significance of the regression parameters are shown. Listed 
are: Source of variability, Deviance, degrees of freedom (DF), ChiSquare and P value 
(Pr>Chi). The deviance for the reduced model0 (INTERCEPT) is 13.3550. The deviance for 
the full model (farm) is 0. The ChiSquare value (13.36) is for the difference between the 
deviances. Since the P value = 0.0013, the H0 is rejected, these data show evidence for an 
effect of farm on mastitis. The next table shows Least Squares Means and corresponding 
analyses in logit values: Estimate, Standard Errors, degrees of freedom (DF), ChiSquare, P 
value (Pr>Chi), and confidence level (Alpha) for Confidence Limits. The next table presents 
the Difference of Least Squares Means. This output is useful to test which farms are 
significantly different from others. From the last table (Observation Statistics) note the 
predicted proportions (Pred) for each farm.  

22.2 Probit Model 

A standard normal variable can be transformed to a binary variable by defining the 
following: for all values less than some value η, the value 1 is assigned; for all values 
greater than η, the value 0 is assigned (Figure 22.2). The proportion of values equal to 1 and 
0 is determined from the area under the normal distribution, that is, using the cumulative 
normal distribution.  
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Figure 22.2  Connection between binomial and normal variable 

 
Thus, although a binary variable or binomial proportion is being considered, a probability 
can be estimated using the cumulative standard normal distribution. Using this approach, 
the effects of independent variables on the probability or proportion of success can be 
estimated. The inverse cumulative normal distribution is called a probit function, and 
consequently such models are called probit models. Probit models can be applied to 
proportions of more than two categories as well.  
 
The inverse link function is the cumulative normal distribution and the mean is: 

dzeFp z∫
∞−

−===
η

π
ηµ

25.0

2
1)(  

where z is a standard normal variable with mean 0 and variance 1. The link function is 
called the probit link: 

)(1 µη −= F  

The effects of independent variables on η are defined as: 

ηi = F-1(µi) = xiβ  

For example, for regression: 

ηi = F-1(µi) = β0 + β1x1i + β2x2i + ... + βp-1x(p-1)i  

where:  
x1i, x2i,..., x(p-1)i = independent variables 
β0 , β1 , β2 ,..., βp-1 = regression parameters 

The estimation of parameters and tests of hypotheses follow a similar approach as shown 
for logistic regression. 
 
 
 
 
Example: Using a probit model, test the difference in proportions of cows with mastitis 
among three farms:  
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Farm Total no. of 
cows 

No. of cows with 
mastitis 

A 96 36 
B 132 29 
C 72 10 

 
The model is: 

η = F-1(p) = m + τi 

where: 
m = the overall mean of the proportion on the probit scale 
τi = the effect of farm i 

A set of the solutions obtained by setting iτ̂  to zero is: 
0853.1ˆ −=m  

7667.0ˆ =Aτ  
3121.0ˆ =Bτ  
000.0ˆ =Cτ  

The estimate of the proportion for farm A is: 

3750.0)3186.0()7667.00853.1()ˆˆ(ˆˆ 111 =−=+−=+== −−− FFmFp AAA τµ  

The estimate of the proportion for farm B is: 

2197.0)7732.0()7667.00853.1()ˆˆ(ˆˆ 111 =−=+−=+== −−− FFmFp BBB τµ  

The estimate of the proportion for farm C is: 

1389.0)0853.1()ˆˆ(ˆˆ 11 =−=+== −− FmFp CCC τµ  

The deviances for the full and reduced models are: 

( ) 0ˆˆ =+ imD τ   
( ) 3550.13ˆ =mD  

The value of the chi-square statistics is: 

( ) ( ) 3550.13ˆˆˆ2 =+−= imDmD τχ  

For (3-1) = 2 degrees of freedom, the critical value χ2
0.05 = 5.991. The difference in 

incidence of mastitis among the three farms is significant at the 5% level.  
 
 
22.2.1 SAS Example for a Probit model 

The SAS program using a probit model for analyzing data from the example comparing 
incidence of mastitis on three farms is the following. Recall the data:  
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Farm Total no. of 
cows 

No. of cows with 
mastitis 

A 96 36 
B 132 29 
C 72 10 

 
SAS program: 
 
DATA aa; 
INPUT n y farm$; 
DATALINES; 
 96  36  A 
132  29  B 
 72  10  C 
; 
PROC GENMOD DATA=aa; 
      CLASS farm; 
      MODEL y/n = farm / DIST = BIN 
                           LINK = PROBIT 
                          TYPE1 
                          TYPE3 
                          PREDICTED; 
     LSMEANS farm /DIFF CL; 
   RUN; 

 
Explanation: The GENMOD procedure  is used. The CLASS statement defines farm as a 
classification variable. The statement, MODEL y/n = farm, defines the dependent variable 
as a binomial proportion, y = the number of cows with mastitis, and n = the total number of 
cows on that particular farm. The independent variable is farm. The DIST = BIN option 
defines the distribution as binomial, and LINK = PROBIT denotes a probit model. The 
TYPE1 and TYPE3 statements direct calculation of sequential and partial tests using 
deviances from the full and reduced models. The PREDICTED statement gives an output of 
predicted proportions for each farm. The LSMEANS statement produces the parameter 
estimates for each farm. 
 
SAS output: 
 
                       Analysis Of Parameter Estimates 
 
                       Standard       Wald 95%      Chi- 
Parameter  DF  Estimate  Error  Confidence Limits  Square  Pr>ChiSq 
Intercept  1   -1.0853   0.1841  -1.4462  -0.7245   34.75   <.0001 
farm  A    1    0.7667   0.2256   0.3246   1.2088   11.55   0.0007 
farm  B    1    0.3121   0.2208  -0.1206   0.7448    2.00   0.1574 
farm  C    0    0.0000   0.0000   0.0000   0.0000     .        . 
Scale          0    1.0000    0.0000    1.0000    1.0000 
 
NOTE: The scale parameter was held fixed. 
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               LR Statistics For Type 1 Analysis 
 
                                Chi- 
Source      Deviance     DF   Square    Pr > ChiSq 
Intercept    13.3550 
farm          0.0000      2    13.36        0.0013 
 
        LR Statistics For Type 3 Analysis 
 
                             Chi- 
   Source           DF     Square    Pr > ChiSq 
   farm              2      13.36        0.0013 
 
                    Least Squares Means 
 
                         Standard      Chi- 
Effect  farm  Estimate    Error    DF  Square  Pr > ChiSq   Alpha 
farm     A    -0.3186   0.1303     1    5.98      0.0145    0.05 
farm     B    -0.7732   0.1218     1   40.30      <.0001    0.05 
farm      C   -1.0853   0.1841     1   34.75      <.0001    0.05 
 
                             Least Squares Means 
 
                     Effect    farm    Confidence Limits 
                     farm      A      -0.5740     -0.0632 
                     farm      B      -1.0120     -0.5345 
                     farm      C      -1.4462     -0.7245 
 
 
                     Differences of Least Squares Means 
 
                               Standard          Chi- 
Effect  farm  _farm  Estimate   Error    DF  Square  Pr>ChiSq  Alpha 
farm    A     B       0.4546    0.1784   1    6.49    0.0108   0.05 
farm    A     C       0.7667    0.2256   1   11.55    0.0007   0.05 
farm    B     C       0.3121    0.2208   1    2.00    0.1574   0.05 
 
                     Differences of Least Squares Means 
                  Effect  farm  _farm    Confidence Limits 
 
                  farm    A     B        0.1050      0.8042 
                  farm    A     C        0.3246      1.2088 
                  farm    B     C       -0.1206      0.7448 
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                     Observation Statistics 
Observation      y     n       Pred      Xbeta        Std    HessWgt 
 

          1     36    96      0.375  -0.318639  0.1303038  58.895987 
          2     29   132   0.219697  -0.773217  0.1218067  67.399613 
          3     10    72  0.1388889  -1.085325  0.1841074  29.502401 

 
Explanation: The first table presents parameter estimates (Analysis Of Parameter 
Estimates). The parameter estimates are 0853.1ˆ −=m  (Intercept), 7667.0ˆ =Aτ  (farm A), 
and 3121.0ˆ =Bτ  (farm B), and 000.0ˆ =Cτ  (farm C).The extra-dispersion parameter (Scale) 
is 1, and the Scaled Deviance is equal to Deviance. (NOTE: The scale parameter was held 
fixed.). Next, the Type1 and Type3 tests of significance of the regression parameters are 
shown. Listed are: Source of variability, Deviance, degrees of freedom (DF), ChiSquare 
and P value (Pr>Chi). The deviance for the reduced model (INTERCEPT) is 13.3550. The 
deviance for the full model (farm) is 0. The ChiSquare value 13.36 is the difference of the 
deviances. Since the P value = 0.0013, H0 is rejected, these data show evidence of an effect 
of farm on incidence of mastitis. The next table shows the Least Squares Means and 
corresponding analyses in probit values: Estimate, Standard Errors, degrees of freedom 
(DF), ChiSquare, P value (Pr>Chi), confidence level (Alpha) for Confidence Limits. In the 
next table are presented the Difference of Least Squares Means. This output is useful to test 
which farms are significantly different. The last table (Observation Statistics) shows 
predicted proportions (Pred) for each farm. 

22.3 Log-Linear Models  

When a dependent variable is the number of units in some area or volume, classical linear 
regression is often not appropriate to test the effects of independent variables. A count 
variable usually does not have a normal distribution and the variance is not homogeneous. 
To analyze such problems a log-linear model and Poisson distribution can be used.  

The log-linear model is a generalized linear model with a logarithm function as a link 
function: 

η = log(µ)  

The inverse link function is an exponential function. The mean is: 

( ) ηµ eyE ==  

Recall the Poisson distribution and its probability function: 

!
  )(

y
eyp

yλλ−

=  

where λ is the mean number of successes in a given time, volume or area, and e is the base 
of the natural logarithm (e = 2.71828). 

A characteristic of a Poisson variable is that the expectation and variance are equal to 
the parameter λ: 

µ = Var(y) = λ 

The log-linear model for a Poisson variable is: 
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log(µi) = log(λi) = xiβ 

where xi is a linear combination of the vector of independent variables xi and the 
corresponding vector of parameters β. The independent variables can be continuous or 
categorical. 
 
The variance function is: 

V(µ) = V(λ) = λ 

Since the dispersion parameter is equal to one (φ2 = 1), the variance of the Poisson variable 
is equal to variance function: 

Var(y) = V(µ) = V(λ) = λ 

The Poisson log-linear model takes into account heterogeneity of variance by defining that 
the variance depends on the mean. Using an exponential function, the mean can be 
expressed as: 

βxieii == λµ  

Similarly to logit models, the measure of the difference between the observed and estimated 
values is the deviance. The deviance for the Poisson variable is: 
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To test if a particular parameter is needed in the model a chi-square distribution can be used. 
The difference of deviances between the full and reduced models has an approximate chi-
square distribution with degrees of freedom equal to the difference in the number of 
parameters of the full and reduced models.  

Similarly to binomial proportions, count data can sometimes have variance which 
differs from the theoretical variance Var(y) = λ. In other words the dispersion parameter φ2 
differs from one and often is called an extra-dispersion parameter. The variance is: 

Var(y) = V(µ)φ2  

The parameter φ2 can be estimated from the data as the deviance (D) divided by degrees of 
freedom (df):  

df
D

=2φ̂  

The degrees of freedom are defined similarly as for calculating the residual mean square in 
a linear model. The value φ2 = 1 indicates that the variance is consistent with the assumed 
distribution, φ2 < 1 indicates under-dispersion, and φ2 > 1 indicates over-dispersion from the 
assumed distribution. If the extra-dispersion parameter φ2 is different than 1, the test must be 
adjusted by dividing the deviances by φ2. Estimates do not depend on the parameter φ2 and 
they need not be adjusted.  
 
 
Example: The aim of this experiment was to test the difference of somatic cells counts in 
milk of dairy cows between the first, second and third lactations. Samples of six cows were 
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randomly chosen from each of three farms, two cows each from the first, second and third 
lactations. The counts in thousand are shown in the following table:  
 

 Farm 
Lactation A B C 

1 50 
200 

40 
35 

180
90 

2 250 
500 

150
45 

210
100 

3 150 
200 

60 
120 

80 
150 

 

A log-linear model is assumed: 

log(λij) = m + τi + γj  

where: 
λij = the expected number of somatic cells 
m = the overall mean in the logarithmic scale 
τi = the effect of farm i, i = A, B, C 
γj = the effect of lactation j, j = 1, 2, 3 

Similarly as shown for linear models with categorical independent variables, there are no 
unique solutions for m̂ , iτ̂ ’s and jγ̂ ’s. For example, one set of  solutions  can be obtained 
by setting one of the iτ̂  and one of the jγ̂  to zero: 

7701.4ˆ =m  
5108.0ˆ =Aτ  

5878.0ˆ −=Bτ  
0000.0ˆ =Cτ  
2448.01̂ −=γ  

5016.0ˆ2 =γ  
0000.0ˆ3 =γ  

The estimates of the means are unique. For example, the estimate of the mean number of 
cells for farm B in the first lactation is: 

290.51),(ˆ 2448.05878.07701.4ˆ
1

1 === −−++ ee Bm
B

γτγτλ  

The deviance for the full model is: 

( ) 2148.471ˆˆˆ =++ jimD γτ  

The estimate of the extra-dispersion parameter φ2 is: 

( )
2473.36

13
2148.471ˆˆˆ2 ==

++
=

df
mD ji γτ

φ  

The degrees of freedom are defined similarly as for calculating the residual mean square in 
a linear model. Here degrees of freedom are defined as for the residual mean square in the 
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two-way analysis of variance in an ordinary linear model: df = n – a – b + 1, where n = 18 = 
the number of observations; a = 3 = the number of farms and b = 3 = the number of 
lactations. Thus, df = 13.  

The effects of farm and lactation are tested using the differences of deviances adjusted 
for the estimate of the over-dispersion parameter. To test the effect of lactation the adjusted 
deviance of the full model is: 

( ) ( )
0.13

2473.36
2148.471ˆˆˆ

ˆˆˆ
2

* ==
++

=++
φ

γτ
γτ ji

ji

mD
mD  

The adjusted deviance of the reduced model is: 

( ) ( )
23.20

2473.36
2884.733ˆˆˆˆ

2
* ==

+
=+

φ
τ

τ i
i

mDmD  

The difference between the adjusted deviances is: 

( ) ( ) 23.70.13230.20ˆˆˆˆˆ **2 =−=++−+= jii mDmD γττχ  

The critical value for the degrees of freedom = 2 is χ2
0.05,1 = 5.991. The calculated 

difference is greater than the critical value; there is a significant effect of lactation on the 
somatic cell count.  
 
 
22.3.1 SAS Example for a Log-Linear Model 

The SAS program for the example examining the effect of lactation on somatic cell count is 
as follows. The somatic cell counts are in thousands.  
 
SAS program: 
 
DATA cow; 
    INPUT cow farm lact SCC@@; 
    DATALINES; 
 1 1 1  50    2 1 1 200    3 1 2 250 
 4 1 2 500    5 1 3 150    6 1 3 200 
 7 2 1  40    8 2 1  35    9 2 2 150 
10 2 2  45   11 2 3  60   12 2 3 120 
13 3 1 180   14 3 1  90   15 3 2 210 
16 3 2 100   17 3 3  80   18 3 3 150 
    ; 
 
PROC GENMOD DATA=cow; 
    CLASS  farm lact; 
    MODEL SCC = farm lact  / 
                        DIST   = POISSON 
                        LINK   = LOG 
                        TYPE1 
                        TYPE3  
DSCALE PREDICTED; 
   LSMEANS farm lact /DIFF CL; 
RUN; 
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Explanation: The GENMOD procedure is used. The CLASS statement defines farm and 
lact as categorical variables. The statement, MODEL SCC = farm lact, defines somatic cell 
count as the dependent variable, and farm and lact as independent variables. The DIST = 
POISSON option defines the distribution as Poisson, and LINK = LOG denotes that the link 
function is logarithmic. The TYPE1 and TYPE3 statements calculate sequential and partial 
tests using the deviances for the full and reduced models. The DSCALE option estimates 
the over-dispersion parameter. The PREDICTED statement produces an output of predicted 
proportions for each farm. The LSMEANS statement gives the parameter estimates for each 
farm. 
 
SAS output: 
 
            Criteria For Assessing Goodness Of Fit 
 
 Criterion                 DF           Value        Value/DF 
 Deviance                  13        471.2148         36.2473 
 Scaled Deviance           13         13.0000          1.0000 
 Pearson Chi-Square        13        465.0043         35.7696 
 Scaled Pearson X2         13         12.8287          0.9868 
 Log Likelihood                      296.5439 
 
          Algorithm converged. 
 
                              Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence       Chi- 
 Parameter    DF  Estimate     Error         Limits         Square  Pr>ChiSq 
 Intercept    1    4.7701    0.2803    4.2208    5.3194  289.65      <.0001 
 farm      1  1    0.5108    0.2676   -0.0136    1.0353    3.64      0.0563 
 farm      2  1   -0.5878    0.3540   -1.2816    0.1060    2.76      0.0968 
 farm      3  0    0.0000    0.0000    0.0000    0.0000     .         . 
 lact      1  1   -0.2448    0.3296   -0.8907    0.4012    0.55      0.4577 
 lact      2  1    0.5016    0.2767   -0.0408    1.0439    3.29      0.0699 
 lact      3  0    0.0000    0.0000    0.0000    0.0000     .         . 
 Scale        0    6.0206    0.0000    6.0206    6.0206 
 
NOTE: The scale parameter was estimated by the square root of DEVIANCE/DOF. 
 
                               LR Statistics For Type 1 Analysis 
 
                                                        Chi- 
Source      Deviance    Num DF  Den DF  F Value  Pr>F  Square   Pr > ChiSq 
Intercept  1210.4938 
farm        733.2884        2      13     6.58   0.0106   13.17      0.0014 
lact        471.2148        2      13     3.62   0.0564    7.23      0.0269 
 
               LR Statistics For Type 3 Analysis 
 
                                                  Chi- 
 Source   Num DF    Den DF  F Value  Pr > F     Square    Pr > ChiSq 
 farm          2        13     6.58  0.0106      13.17        0.0014 
 lact          2        13     3.62  0.0564       7.23        0.0269 
                                  Least Squares Means 
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                            Stand       Chi- 
Effect  farm  lact  Estim   Error  DF  Square  Pr>ChiSq  Alpha  Conf Limits 
 
 farm    1          5.3665  0.1680  1  1019.8   <.0001  0.05   5.0372  5.6959 
 farm    2          4.2679  0.2862  1  222.30   <.0001  0.05   3.7069  4.8290 
 farm    3          4.8557  0.2148  1  511.02   <.0001  0.05   4.4347  5.2767 
 lact          1    4.4997  0.2529  1  316.67   <.0001  0.05   4.0041  4.9953 
 lact          2    5.2460  0.1786  1  862.72   <.0001  0.05   4.8960  5.5961 
 lact          3    4.7444  0.2252  1  443.88   <.0001  0.05   4.3031  5.1858 
 
                               Differences of Least Squares Means 
 

                                         Stand        Chi- 
Effect  farm lact  _farm _lact  Estimate  Error  DF  Square  Pr>ChiSq  Alpha 
farm    1            2           1.0986   0.3277  1   11.24   0.0008    0.05 
farm    1            3           0.5108   0.2676  1    3.64   0.0563    0.05 
farm    2            3          -0.5878   0.3540  1    2.76   0.0968    0.05 
lact           1             2  -0.7463   0.2997  1    6.20   0.0128    0.05 
lact           1             3  -0.2448   0.3296  1    0.55   0.4577    0.05 
lact           2             3   0.5016   0.2767  1    3.29   0.0699    0.05 
 
             Differences of Least Squares Means 
 

  Effect  farm   lact  _farm  _lact    Confidence Limits 
  farm    1            2                0.4563      1.7409 
  farm    1            3               -0.0136      1.0353 
  farm    2            3               -1.2816      0.1060 
  lact           1             2       -1.3337     -0.1590 
  lact           1             3       -0.8907      0.4012 
  lact           2             3       -0.0408      1.0439 
 
                                 Observation Statistics 
 

Observation     SCC       Pred        Xbeta         Std        HessWgt 
          1       50    153.87931    5.0361686    0.2718121    4.2452636 
          2      200    153.87931    5.0361686    0.2718121    4.2452636 
          3      250    324.56897     5.782498    0.2045588    8.9542954 
          4      500    324.56897     5.782498    0.2045588    8.9542954 
          5      150    196.55172     5.2809256   0.246284     5.4225215 
          6      200    196.55172     5.2809256   0.246284     5.4225215 
          7       40    51.293104     3.9375563   0.3571855    1.4150879 
          8       35    51.293104     3.9375563   0.3571855    1.4150879 
          9      150    108.18966     4.6838858   0.3091019    2.9847651 
         10       45    108.18966     4.6838858   0.3091019    2.9847651 
         11       60    65.517241     4.1823133   0.3381649    1.8075072 
         12      120    65.517241     4.1823133   0.3381649    1.8075072 
         13      180    92.327586     4.525343    0.302955     2.5471582 
         14       90    92.327586     4.525343    0.302955     2.5471582 
         15      210    194.74138     5.2716724   0.2444263    5.3725773 
         16      100    194.74138     5.2716724   0.2444263    5.3725773 
         17       80    117.93103     4.7701      0.2802779    3.2535129 
         18      150    117.93103     4.7701      0.2802779    3.2535129 
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Explanation: The first table shows statistics describing correctness of the model. Several 
criteria are shown (Criterion), along with degrees of freedom (DF), Value and value divided 
by degrees of freedom (Value/DF). The Deviance = 471.214, and the scaled deviance on the 
extra-dispersion parameter is Scaled Deviance = 13.0. The next table presents parameter 
estimates (Analysis of Parameter Estimates). The extra-dispersion parameter (Scale = 
6.0206) is here expressed as the square root of the deviance divided by the degrees of 
freedom. Next, the Type1 and Type3 tests of significance of regression parameters are 
shown including: Source of variability, Deviance, degrees of freedom (DF), ChiSquare and 
P value (Pr>Chi).  The values of ChiSquare are for the difference of deviances corrected on 
the parameter of dispersion. There are significant effects of farms and lactations on somatic 
cell counts, the P values (Pr >ChiSq) are 0.0014 and 0.0269. SAS also calculates F tests for 
farms and lactation by calculating the F values as the difference of deviances divided by 
their corresponding degrees of freedom. In the table are degrees of freedom for the 
numerator and denominator (Num DF and Den DF), F Value and P value (Pr > F). The 
next table shows Least Squares Means and corresponding analyses in logit values: Estimate, 
Standard Errors, degrees of freedom (DF), ChiSquare, P value (Pr>Chi), confidence level 
(Alpha) for Confidence Limits. The next table presents Difference of Least Squares Means. 
This output is useful to determine significant differences among farms. For example, there 
is a significant difference between the first and second lactations, because the P value (Pr > 
ChiSq) = 0.0128. The last table (Observation Statistics) shows predicted proportions (Pred) 
for each combination of farm and lactation among other statistics. For example the 
estimated number of somatic cells in the first lactation and farm 2 is equal to 51.293104. 
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Solutions of Exercises 

1.1. Mean = 26.625; Variance = 3.625; Standard deviation = 1.9039; Coefficient of 
variation = 7.15%; Median = 26; Mode = 26 
1.2. Variance = 22.6207 
1.3. The number of observations = 46; Mean = 20.0869; Variance = 12.6145; Standard 
deviation = 3.5517; Coefficient of variation = 17.68 %  
1.4. The number of  observations = 17; Mean = 28.00; Variance = 31.3750; Standard 
deviation = 5.6013; Coefficient variation = 20.0%  
2.1. a) 2/3; b) 1/3; c) 5/12; d) 11/12; e) 3/4 
3.1. a) 0.10292; b) 0.38278 
3.2. Ordinate = 0.22988 
3.3. a) 0.5 b) 0.025921; c) .10133; d) 184.524; e) 211.664 
3.4. a) 52; b) 10; c) 67; d) 16.9; e) 300 f) 360 
3.5. a) 0.36944; b) 0.63055; c) 0.88604; d) 4.30235; e) 4.48133 
5.1. (26.0161; 27.2339) 
5.2. (19.0322; 21.1417) 
5.3. (25.1200572; 30.8799) 
6.1. z = 1.7678; P value = 0.0833 
6.2. t = 2.0202, degrees of freedom = 16; P value = 0.0605 
6.3. t = 6.504 
6.4. Chi-square = 21.049; P value =  0.0008 
6.5. Chi-square = 7.50; P value = 0.0062 
6.6. z = 2.582 
6.7. z = 3.015 
7.1.  b0 = 25.4286; b1 = 8.5714; F = 12.384; P value = 0.0079; R2 = 0.6075 
7.2. b0 = 1.2959; b1 = 0.334014; F = 8.318; P value = 0.0279; R2 = 0.5809 
7.3. a) *the origin between years 1985 and 1986; b) b0 = 93.917; b1 = -1.470; c) expected 
number of horses in 1992 year is 74.803 
8.1. r = 0.935, P value <0.001 
8.2. r = 0.65; t = 3.084; P value =0.0081 
11.1. MSTRT = 41.68889; MSRES = 9.461; F = 4.41; P value = 0.0137 
11.2. MSTRT = 28.1575; MSRES = 3.2742; F = 8.60; P value = 0.0082 
11.3. σ2 + 20 σ2

τ= 1050.5; σ2 = 210; intraclass correlation = 0.8334 
13.1. MSTRT = 26.6667; MSBLOCK = 3.125; MSRES = 1.7917; F for treatment = 14.88; P value 
= 0.0002 
14.1.  
Source       df       SS           MS        F     P value 
QUAD          2   1.81555556   0.90777778   0.42   0.6658 
SOW(QUAD)     6  22.21111111   3.70185185   1.73   0.2120 
PERIOD(QUAD)  6   2.31777778   0.38629630   0.18   0.9759 
TRT           2   4.74000000   2.37000000   1.11   0.3681 
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15.1.  
Source        df           SS            MS        F  P value 
PROT           2    41.37500000   20.68750000    1.95  0.1544 
ENERG          1   154.08333333  154.08333333   14.55  0.0004 
PROT*ENERG     2    61.79166667   30.89583333    2.92  0.0651 
Residual      42   444.75000000   10.58928571 

 
18.1.  
Source         df num   df den    F     P value 
Grass            1         2     9.82   0.0924 
Density          1         4    73.36   0.0033 
Grass x Density  1         4     0.11   0.7617 
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Appendix A: Vectors and Matrices 

A matrix is a collection of elements that are organized in rows and columns according to 
some criteria. Examples of two matrices, A and B, follow: 

23233231
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The symbols a11, a12, etc., denote the row and column position of the element. An element 
aij, is in the i-th row and j-th column. 
 
A matrix defined with only one column or one row is called a vector. For example, a vector 
b is: 

122
1

x








=b  

Types and Properties of Matrices 

A square matrix is a matrix that has equal numbers of rows and columns. The symmetric 
matrix is a square matrix with aij = aji. For example, the matrix C is a symmetric matrix 
because the element in the second row and first column is equal to the element in the first 
row and second column: 

2231
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
=C  

A diagonal matrix is a square matrix with aij = 0 for each i ≠ j. 
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An identity matrix is a diagonal matrix with aii = 1. 
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A null matrix is a matrix with all elements equal to zero. A null vector is a vector with all 
elements equal to zero.  
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00  

A matrix with all elements equal to 1 is usually denoted with J. A vector with all elements 
equal to 1, is usually denoted with 1. 
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The transpose matrix of a matrix A, denoted by A' , is obtained by interchanging columns 
and rows of the matrix A. For example, if: 
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The rank of a matrix is the number of linearly independent columns or rows. Columns 
(rows) are linearly dependent if some columns (rows) can be expressed as linear 
combinations some other columns (rows). The rank determined by columns is equal to the 
rank determined by rows.  
 

Example: The matrix 














 −

145
213
321

 has a rank of two because the number of linearly 

independent columns is two. Any column can be presented as the linear combination of 
other two columns, that is, only two columns are needed to give the same information as all 
three columns. For example, the first column is the sum of the second and third columns: 
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Also, there are only two independent rows. For example the first row can be expressed as 
the second row multiplied by two minus the third row: 

[ ] [ ] [ ]1452132321 −=−  

Thus, the rank of the matrix equals two.  

Matrix and Vector Operations 

A matrix is not only a collection of numbers, but numerical operations are also defined on 
matrices. Addition of matrices is defined such that corresponding elements are added: 
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Matrix multiplication with a number is defined such that each matrix element is multiplied 
by that number: 
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The multiplication of two matrices is possible only if the number of columns of the first 
(left) matrix is equal to the number of rows of the second (right) matrix. Generally, if a 
matrix A has dimension r x c, and a matrix B has dimension c x s, then the product AB is a 
matrix with dimension r x s and its element in the i-th row and j-th column is defined as: 

∑ =

c

k kjikba
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Example: Calculate AC if: 
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Example 2: 

Let 
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The product of the transpose of a vector and the vector itself is known as a quadratic form 
and denotes the sum of squares of the vector elements. If y is a vector: 
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The quadratic form is: 
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A trace of a matrix is the sum of the diagonal elements of the matrix. For example:  
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then the trace is tr(D) = 2 + 5 + 11 = 18 
 
The inverse of some square matrix C is a matrix C-1 such that C-1C = I and CC-1 = I, that is, 
the product of a matrix with its inverse is equal to the identity matrix. A matrix has an 
inverse if its rows and columns are linearly independent. 
 
A generalized inverse of some matrix C is the matrix C- such that CC-C = C. Any matrix, 
even a nonsquare matrix with linearly dependent rows or columns, has a generalized 
inverse. Generally, CC- or C-C is not equal to identity matrix I, unless C- = C-1. 
 
A system of linear equations can be expressed and solved using matrices. For example, the 
system of equations with two unknowns: 

2a1 + a2 = 5 
a1 - a2 = 1 
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Xa = y      by multiplication of the left and right sides with X-1 

X-1Xa = X-1y     because X-1X = I 
a = X-1y 
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Normal equations are defined as: 

X'Xa = X'y 

Multiplying both sides with (X'X)-1 the solution of a is: 
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a = (X'X)-1X'y 

The normal equations are useful for solving a system of equations when the number of 
equations is greater than the number of unknowns.  
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Appendix B: Statistical Tables 

Area under the Standard Normal Curve, z > zα 

 

 

zα 

 α 

 
zα 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 
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Critical Values of Student t Distributions, t > tα 

 

tα 

 α 

 
Degrees of 

freedom t0.1 t0.05 t0.025 t0.01 t0.005 t0.001 

1 3.078 6.314 12.706 31.821 63.656 318.289 
2 1.886 2.920 4.303 6.965 9.925 22.328 
3 1.638 2.353 3.182 4.541 5.841 10.214 
4 1.533 2.132 2.776 3.747 4.604 7.173 
5 1.476 2.015 2.571 3.365 4.032 5.894 

6 1.440 1.943 2.447 3.143 3.707 5.208 
7 1.415 1.895 2.365 2.998 3.499 4.785 
8 1.397 1.860 2.306 2.896 3.355 4.501 
9 1.383 1.833 2.262 2.821 3.250 4.297 
10 1.372 1.812 2.228 2.764 3.169 4.144 

11 1.363 1.796 2.201 2.718 3.106 4.025 
12 1.356 1.782 2.179 2.681 3.055 3.930 
13 1.350 1.771 2.160 2.650 3.012 3.852 
14 1.345 1.761 2.145 2.624 2.977 3.787 
15 1.341 1.753 2.131 2.602 2.947 3.733 

16 1.337 1.746 2.120 2.583 2.921 3.686 
17 1.333 1.740 2.110 2.567 2.898 3.646 
18 1.330 1.734 2.101 2.552 2.878 3.610 
19 1.328 1.729 2.093 2.539 2.861 3.579 
20 1.325 1.725 2.086 2.528 2.845 3.552 
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Critical Values of Student t Distributions, t > tα (cont…) 

 

tα 

 α 

 
Degrees of 

freedom t0.1 t0.05 t0.025 t0.01 t0.005 t0.001 

21 1.323 1.721 2.080 2.518 2.831 3.527 
22 1.321 1.717 2.074 2.508 2.819 3.505 
23 1.319 1.714 2.069 2.500 2.807 3.485 
24 1.318 1.711 2.064 2.492 2.797 3.467 
25 1.316 1.708 2.060 2.485 2.787 3.450 

26 1.315 1.706 2.056 2.479 2.779 3.435 
27 1.314 1.703 2.052 2.473 2.771 3.421 
28 1.313 1.701 2.048 2.467 2.763 3.408 
29 1.311 1.699 2.045 2.462 2.756 3.396 
30 1.310 1.697 2.042 2.457 2.750 3.385 

40 1.303 1.684 2.021 2.423 2.704 3.307 
50 1.299 1.676 2.009 2.403 2.678 3.261 
60 1.296 1.671 2.000 2.390 2.660 3.232 
120 1.289 1.658 1.980 2.358 2.617 3.160 
∝ 1.282 1.645 1.960 2.326 2.576 3.090 
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Critical Values of Chi-square Distributions, χ2 > χ2

α 

 

χ2
α 

α 

 
Degrees of 

freedom χ2
0.1 χ2

0.05 χ2
0.025 χ2

0.01 χ2
0.005 χ2

0.001 

1 2.706 3.841 5.024 6.635 7.879 10.827 

2 4.605 5.991 7.378 9.210 10.597 13.815 
3 6.251 7.815 9.348 11.345 12.838 16.266 

4 7.779 9.488 11.143 13.277 14.860 18.466 
5 9.236 11.070 12.832 15.086 16.750 20.515 

6 10.645 12.592 14.449 16.812 18.548 22.457 
7 12.017 14.067 16.013 18.475 20.278 24.321 
8 13.362 15.507 17.535 20.090 21.955 26.124 
9 14.684 16.919 19.023 21.666 23.589 27.877 
10 15.987 18.307 20.483 23.209 25.188 29.588 

11 17.275 19.675 21.920 24.725 26.757 31.264 
12 18.549 21.026 23.337 26.217 28.300 32.909 
13 19.812 22.362 24.736 27.688 29.819 34.527 
14 21.064 23.685 26.119 29.141 31.319 36.124 
15 22.307 24.996 27.488 30.578 32.801 37.698 

16 23.542 26.296 28.845 32.000 34.267 39.252 
17 24.769 27.587 30.191 33.409 35.718 40.791 
18 25.989 28.869 31.526 34.805 37.156 42.312 
19 27.204 30.144 32.852 36.191 38.582 43.819 
20 28.412 31.410 34.170 37.566 39.997 45.314 
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Critical Values of Chi-square Distributions, χ2 > χ2

α (cont…) 

 

χ2
α 

α 

 
Degrees of 

freedom χ2
0.1 χ2

0.05 χ2
0.025 χ2

0.01 χ2
0.005 χ2

0.001 

21 29.615 32.671 35.479 38.932 41.401 46.796 
22 30.813 33.924 36.781 40.289 42.796 48.268 
23 32.007 35.172 38.076 41.638 44.181 49.728 
24 33.196 36.415 39.364 42.980 45.558 51.179 
25 34.382 37.652 40.646 44.314 46.928 52.619 

26 35.563 38.885 41.923 45.642 48.290 54.051 
27 36.741 40.113 43.195 46.963 49.645 55.475 
28 37.916 41.337 44.461 48.278 50.994 56.892 
29 39.087 42.557 45.722 49.588 52.335 58.301 
30 40.256 43.773 46.979 50.892 53.672 59.702 

40 51.805 55.758 59.342 63.691 66.766 73.403 
50 63.167 67.505 71.420 76.154 79.490 86.660 
60 74.397 79.082 83.298 88.379 91.952 99.608 
70 85.527 90.531 95.023 100.425 104.215 112.317 
80 96.578 101.879 106.629 112.329 116.321 124.839 
90 107.565 113.145 118.136 124.116 128.299 137.208 
100 118.498 124.342 129.561 135.807 140.170 149.449 
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Critical Values of F Distributions, F > Fα, α = 0.05 

 

Fα 

α 

 
  Numerator degrees of freedom 
  1 2 3 4 5 6 7 8 

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 
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120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 
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Critical Values of F Distributions, F > Fα, α = 0.05 (cont…) 

 

Fα 

α 

 
  Numerator degrees of freedom 

  9 10 12 15 20 24 30 60 120 

1 240.54 241.88 243.90 245.95 248.02 249.05 250.10 252.20 253.25 
2 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.48 19.49 
3 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.57 8.55 
4 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.69 5.66 
5 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.43 4.40 

6 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.74 3.70 
7 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.30 3.27 
8 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.01 2.97 
9 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.79 2.75 
10 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.62 2.58 

11 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.49 2.45 
12 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.38 2.34 
13 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.30 2.25 
14 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.22 2.18 
15 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.16 2.11 

16 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.11 2.06 
17 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.06 2.01 
18 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.02 1.97 
19 2.42 2.38 2.31 2.23 2.16 2.11 2.07 1.98 1.93 
20 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.95 1.90 

21 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.92 1.87 
22 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.89 1.84 
23 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.86 1.81 
24 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.84 1.79 
25 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.82 1.77 

26 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.80 1.75 
27 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.79 1.73 
28 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.77 1.71 
29 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.75 1.70 
30 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.74 1.68 

40 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.64 1.58 
50 2.07 2.03 1.95 1.87 1.78 1.74 1.69 1.58 1.51 
60 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.53 1.47 
70 2.02 1.97 1.89 1.81 1.72 1.67 1.62 1.50 1.44 
80 2.00 1.95 1.88 1.79 1.70 1.65 1.60 1.48 1.41 
90 1.99 1.94 1.86 1.78 1.69 1.64 1.59 1.46 1.39 
100 1.97 1.93 1.85 1.77 1.68 1.63 1.57 1.45 1.38 
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120 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.43 1.35 
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Critical Value of F Distributions, F > Fα, α = 0.01 

 

Fα 

α 

 
  Numerator degrees of freedom 
  1 2 3 4 5 6 7 8 

1 4052.18 4999.34 5403.53 5624.26 5763.96 5858.95 5928.33 5980.95 
2 98.50 99.00 99.16 99.25 99.30 99.33 99.36 99.38 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 
70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 
90 6.93 4.85 4.01 3.53 3.23 3.01 2.84 2.72 
100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 
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120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 
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Critical Values of F Distributions, F > Fα, α = 0.01 (cont…) 
 

Fα 

α 

 
  Numerator degrees of freedom 
  9 10 12 15 20 24 30 60 120 

1 6022.40 6055.93 6106.68 6156.97 6208.66 6234.27 6260.35 6312.97 6339.51 
2 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.48 99.49 
3 27.34 27.23 27.05 26.87 26.69 26.60 26.50 26.32 26.22 
4 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.65 13.56 
5 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.20 9.11 

6 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.06 6.97 
7 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.82 5.74 
8 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.03 4.95 
9 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.48 4.40 
10 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.08 4.00 

11 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.78 3.69 
12 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.54 3.45 
13 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.34 3.25 
14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.18 3.09 
15 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.05 2.96 

16 3.78 3.69 3.55 3.41 3.26 3.18 3.10 2.93 2.84 
17 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.83 2.75 
18 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.75 2.66 
19 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.67 2.58 
20 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.61 2.52 

21 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.55 2.46 
22 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.50 2.40 
23 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.45 2.35 
24 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.40 2.31 
25 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.36 2.27 

26 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.33 2.23 
27 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.29 2.20 
28 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.26 2.17 
29 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.23 2.14 
30 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.21 2.11 

40 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.02 1.92 
50 2.78 2.70 2.56 2.42 2.27 2.18 2.10 1.91 1.80 
60 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.84 1.73 
70 2.67 2.59 2.45 2.31 2.15 2.07 1.98 1.78 1.67 
80 2.64 2.55 2.42 2.27 2.12 2.03 1.94 1.75 1.63 
90 2.61 2.52 2.39 2.24 2.09 2.00 1.92 1.72 1.60 
100 2.59 2.50 2.37 2.22 2.07 1.98 1.89 1.69 1.57 
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120 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.66 1.53 
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Critical Values of the Studentized Range, q(a,v)  

a = number of groups  
df = degrees of freedom for the experimental error 
α = 0.05  
 

 Number of groups (a) 

df 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 18.00 27.00 32.80 37.20 40.50 43.10 45.40 47.30 49.10 50.60 51.90 53.20 54.30 55.40 56.30 
2 6.09 8.33 9.80 10.89 11.73 12.43 13.03 13.54 13.99 14.39 14.75 15.08 15.38 15.65 15.91 
3 4.50 5.91 6.83 7.51 8.04 8.47 8.85 9.18 9.46 9.72 9.95 10.16 10.35 10.52 10.69 
4 3.93 5.04 5.76 6.29 6.71 7.06 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.67 8.80 

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 
6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 6.65 6.79 6.92 7.04 7.14 7.24 
7 3.34 4.16 4.68 5.06 5.35 5.59 5.80 5.99 6.15 6.29 6.42 6.54 6.65 6.75 6.84 
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 6.57 
9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87 5.98 6.09 6.19 6.28 6.36 

10 3.15 3.88 4.33 4.66 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.12 6.20 
11 3.11 3.82 4.26 4.58 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98 6.06 
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51 5.61 5.71 5.80 5.88 5.95 
13 3.06 3.73 4.15 4.46 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.86 
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.56 5.64 5.72 5.79 

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65 5.72 
16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 5.66 
17 2.98 3.62 4.02 4.31 4.52 4.70 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.55 5.61 
18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 5.17 5.27 5.35 5.43 5.50 5.57 
19 2.96 3.59 3.98 4.26 4.47 4.64 4.79 4.92 5.04 5.14 5.23 5.32 5.39 5.46 5.53 

20 2.95 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 5.50 
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 5.38 
30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83 4.92 5.00 5.08 5.15 5.21 5.27 
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 4.82 4.90 4.98 5.05 5.11 5.17 

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00 5.06 
120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 4.78 4.84 4.90 4.95 
∝ 2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 4.84 
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